检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾钧[1]
机构地区:[1]上海第二工业大学网络信息中心,上海201209
出 处:《计算机仿真》2010年第9期146-149,共4页Computer Simulation
摘 要:研究无线传感器覆盖算法,针对标准粒子群算法的网络覆盖存在收敛速度慢、易于陷入局部最优值的问题,为满足动态节点选择实时性的要求,提出一种多粒子群的无线传感网络覆盖算法。以无线传感器最大覆盖率为目标函数,通过多个粒子群彼此独立地搜索解空间,加大粒子的搜索范围,减小陷入局部最优的可能性。采用进化粒子,使粒子覆盖更有效率,提高了算法的寻优能力,有效地避免了标准粒子群算法容易出现的"早熟"问题,提高了算法的稳定性。仿真实验表明,与标准粒子群算法、传统遗传算法和新量子遗传算法的优化效果相比较,其覆盖率分别提高了8.39%、3.07%和0.75%;收敛速度提高了25.3%、23.8%和23.8%,证明粒子进化的多粒子群方法有效地优化无线传感网络,实现节点选择的实时性要求。To maximize the network coverage and extend the life of the network,a Wireless Sensor Networks (WSNs) coverage optimal strategy is proposed based on the evolution of Multi-particle Particle Swarm Optimization (MPSO). By using the method of Multi-groups parallel searching,the particles,which fall into the best part area according to the theory of evolution,can be chosen rapidly. The strategy also avoids a phenomenon of premature which often occurs when using the method of elementary Particle Swarm Optimization (PSO),and improves the stability of the algorithm. In the paper,the influence about perceived radius of the nodes on the coverage performance is analyzed through the simulation experiment. The coverage rate and convergence rate increase as the radius of perception speeds up gradually. Experimental results indicate that the MPSO strategy is better than PSO,the Conventional Genetic Algorithms (CGA),and the New Quantum Genetic Algorithm (NQGA) in coverage optimization.
关 键 词:无线传感网络 覆盖优化 粒子进化 粒子群优化 覆盖率
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3