检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海应用技术学院城市建设与安全工程学院,上海200235 [2]深圳市摩比天线有限责任公司,广东深圳518057
出 处:《上海应用技术学院学报(自然科学版)》2010年第2期87-91,共5页Journal of Shanghai Institute of Technology: Natural Science
基 金:上海市科委重点科技攻关项目(072105115)
摘 要:针对基于弦振动理论建立的铰支边界条件下拉索索力计算公式在实际工程应用中存在的问题,提出了基于最小方差的索力计算方法。通过估算确定EI的变化范围,根据实测的拉索频率值,利用索力计算公式算得对应的索力值和索力平均值。用方差2σ来描述索力值之间差异程度,当方差2σ最小时,对应的EI值为最真实的抗弯刚度,而索力平均值即为所求索力。设计了室内拉索试验模型,讨论了抗弯刚度与频率选取阶数对索力的影响,并进行了42种工况的试验,通过计算索力与加载索力的分析比较,验证了本文提出的最小方差法求索力的实用可靠性。To solve the problem of the existing cable tension fomula on simply supported boundary con- dition in the real engineering application, calculating theory of cable tension based on least square devia- tion was proposed. By estimating the changing zone of EI and using cable's actual frequencies, corre- sponding cable tension and mean cable tension can be calculated, a2 was used to represente the diversity degree among cable tensions, when a2 was least, EI is the optimal flexural rigidity. An experimental ca- ble model was maded, and a series of experiments were conducted to test the influence of flexural rigidi- ty and chosen frequency number on the cable tension, moreover, calculated cable tension were compared with practical cable tension on 42 different conditions. It demonstrates that the least square deviation method presented in this paper are practical and dependable.
关 键 词:桥梁工程 索力公式 最小方差 抗弯刚度 边界条件
分 类 号:U443.38[建筑科学—桥梁与隧道工程] U441[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74