检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《软件学报》1999年第6期622-630,共9页Journal of Software
基 金:国家863高科技项目基金
摘 要:基于小波变换的图像压缩算法在较低码率时出现的Gibbs效应多年来一直未能得到很好的解决,其主要原因是,纯粹基于像素值的MSE(meansquareerror)准则对于图像边缘对应的小波系数分配了较少的比特数.文章在详细分析了Shapiro和Said&Pearlman等人提出的零树小波压缩算法的基础上,从抑制高频噪声和图像边缘对应系数的自适应量化等方面对原来的算法进行了改进,给出了相应的对比实验结果.文章的主要意义在于,提出了识别与压缩相结合的思想,由于小波变换的空间局部化特性,因此可以进行非常灵活的比特分配。Gibbs phenomenon, which occurs in the waveletbased image compression algorithms under low bit rates, remains an open question for many years. The main cause is that purelypixelvaluebased MSE(mean square error) criteria can not allocate enough bits to the wavelet coefficients corresponding to edges in image. With detail analysis of zerotree wavelet image compression algorithm originally proposed by Shapiro and then wellmodified by Said and Pearlman, the algorithm is improved by suppressing high frequency noises as well as adaptively quantizing coefficients around edges. Experimental results are comparatively given. The main contribution of this paper is the idea of combination of recognition and compression. With the aid of the spatial localization property of wavelet transform, a very flexible bit allocation scheme can be realized, and therefore Gibbs phenomenon is reduced to some extent.
关 键 词:图像压缩 小波变换 零树算法 图像编码 图像处理
分 类 号:TN919.8[电子电信—通信与信息系统] TP391.41[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.179.141