检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴琨[1,2] 徐雪雁[1,2] 王思轩[2] 周航[2] 张挽澜[2] 张文通[1,2] 卢阿娜[1,2] 宋梦[1,2] 杨潇[1,2] 樊雅梦[1,2] 张保春[2] 李澎涛[2] 蔡大勇[1,2]
机构地区:[1]中国医学科学院/中国协和医科大学药用植物研究所,北京100193 [2]北京中医药大学
出 处:《中国药师》2010年第10期1390-1393,共4页China Pharmacist
基 金:国家重大基础研究项目(编号:G2000056905);国家自然科学基金(编号:30873464);教育部重点研究项目(编号:108019)
摘 要:目的:建立大鼠离体肝动脉/门静脉灌流系统的实验方法。方法:雌性Wistar大鼠麻醉状态下,肝动脉、门静脉和肝静脉插管;经肝动脉冲净残留血液,灌流状态下游离肝脏;定量蠕动泵调节肝动脉或门静脉的Krebs-Henseleit平衡液(或加等渗葡聚糖)的灌流流速,泰盟BL-420S生物机能实验系统监测肝动脉或门静脉的压力变化,采用Prism-4非线型可变斜率回归获得"有或无胶体渗透压"KH液灌流的流速-压力曲线及方程式,计算半效流速及其95%的可信限。结果:无胶体渗透压灌流状态下的肝脏系数无差别,肝动脉的半效流速为2 217(95%CI 1 209~4 068)μl·min^(-1),对数流速-压力直线方程为Y=142.4X+706.9;门静脉半效流速为3 791(95%CI 3 549~4 049)μl·min^(-1),对数流速-压力直线方程为Y=479.6X+5 034。等效胶体渗透压灌流状态下的肝脏系数无差别,肝动脉半效流速为3 754(95%CI 3 175~4 440)μl·min^(-1),对数流速-压力直线方程为Y=133.5X-719.0;门静脉半效流速为6 018(95%CI 5 565~6 508)μl·min^(-1),对数流速-压力直线回归方程为Y=538.3X+4 704。半效流速接近正常大鼠生理平均值,各半效流速95%可信限涵盖大鼠正常生理状态的变化范围。有或无胶体渗透压灌流状态之间总体无差别。结论:在恒流测压模式下,等渗灌流大鼠离体肝动脉和门静脉灌流系统的视窗时程长、机能变化稳定、操作流程简便,为认识肝动脉和门静脉离体舒缩机制奠定了基础。Objective: To set up a model for rat perfusion of hepatic artery and portal vein in vitro. Method: Healthy female Wistar rats were canalized from hepatic artery, portal vein and hepatic vein in vitro. Blood in liver was eliminated with Krebs-Henseleit solution through the hepatic artery. Each perfusion velocity of Krebs-Henseleit solution ( or modified with polygluosan to get an equal colloid osmotic pressure) was exactly controlled with a quantified pump in vitro. Meanwhile, both pressures were monitored with BL-420S physiological experiment system. The equation, the median velocity (EVs0) and its 95% confidence limits were regressed with Prism-4 software in non-liner fit and various slopes. Result: With Krebs-Henseleit solution, the regressed equation of pressure (Y) from perfusion velocity (X) in hepatic artery was Y = 142.4X + 706.9, the EV50 was 2 217 (95% CI 1 209-4 068)μl·min^-1; meanwhile, the equation in portal vein was Y = 479. 6X + 5 034, the EV50 was 3 791 (95% CI 3 549-4 049 )μl·min^-1. With modified Krebs-Henseleit solution with an equal colloid osmotic, the equation in hepatic artery was Y = 133.5X -719. 0, the EV50 was 3 754 (95% CI 3 175- 4 440)μl·min^-1 ; meanwhile, the equation in portal vein was Y = 538. 3X + 4 704, the EVs0 was 6 018 (95 % CI 5 565-6 508 ) μl·min^-1. Each EV50 was similar to the average value of healthy physiological state, each 95% limits cover the range of healthy variations. Conclusion: An infused model of rat hepatic artery and portal vein in vivo has been set up for the blood vessel regulation in liver, advantage with longer duration for observing, more stability in regulatory functions and simpler operational processdure.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.235.161