机构地区:[1]Chinese Academy of Meteorological Sciences [2]National Climate Center, China Meteorological Administration [3]Center for Numerical Prediction Research and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences [4]Center for Atmosphere Watch and Services, China Meteorological Administration [5]Air Quality Research Branch, Meteorological Service of Canada, Toronto, Ontario, Canada
出 处:《Advances in Atmospheric Sciences》2010年第5期1064-1077,共14页大气科学进展(英文版)
基 金:financially supported by the National Basic Research Program of China(Grant No. 2006CB403707);the Public Meteorology Special Foundation of MOST (Grant Nos. GYHY200706036 and 2010CB955608), ;the National Key Technology R&D Program (Grant Nos. 2007BAC03A01 and 2008BAC40B02)
摘 要:Aerosol indirect effects (AIEs) on global climate were quantitatively investigated by introducing aerosol–cloud interaction parameterizations for water stratus clouds into an AGCM (BCC AGCM2.0.1), which was developed by the National Climate Center of the China Meteorological Administration. The study yielded a global annual mean of -1.14 W m^-2 for the first indirect radiative forcing (IRF), with an obvious seasonal change. In summer, large forcing mainly occurred in mid to high latitudes of the Northern Hemisphere, whereas in winter, large values were found at 60°S. The second indirect effect led to global annual mean changes in net shortwave flux of -1.03 W m^-2 at the top of the atmosphere (TOA), which was relatively significant in mid-latitude regions of both hemispheres. The total AIE reduced the global annual means of net shortwave flux at the TOA and of surface temperature by 1.93 W m^-2 and 0.12 K, respectively. Change in surface temperature induced by the total AIE was clearly larger in the Northern Hemisphere (-0.23 K) than in the Southern Hemisphere, where changes were negligible. The interhemispheric asymmetry in surface cooling resulted in significant differences in changes of the interhemispheric annual mean precipitation rate, which could lead to a tendency for the ITCZ to broaden. The total AIE decreased the global annual mean precipitation rate by 0.055 mm df^-1.Aerosol indirect effects (AIEs) on global climate were quantitatively investigated by introducing aerosol–cloud interaction parameterizations for water stratus clouds into an AGCM (BCC AGCM2.0.1), which was developed by the National Climate Center of the China Meteorological Administration. The study yielded a global annual mean of -1.14 W m^-2 for the first indirect radiative forcing (IRF), with an obvious seasonal change. In summer, large forcing mainly occurred in mid to high latitudes of the Northern Hemisphere, whereas in winter, large values were found at 60°S. The second indirect effect led to global annual mean changes in net shortwave flux of -1.03 W m^-2 at the top of the atmosphere (TOA), which was relatively significant in mid-latitude regions of both hemispheres. The total AIE reduced the global annual means of net shortwave flux at the TOA and of surface temperature by 1.93 W m^-2 and 0.12 K, respectively. Change in surface temperature induced by the total AIE was clearly larger in the Northern Hemisphere (-0.23 K) than in the Southern Hemisphere, where changes were negligible. The interhemispheric asymmetry in surface cooling resulted in significant differences in changes of the interhemispheric annual mean precipitation rate, which could lead to a tendency for the ITCZ to broaden. The total AIE decreased the global annual mean precipitation rate by 0.055 mm df^-1.
关 键 词:AEROSOL CLOUD RADIATION indirect effect
分 类 号:X513[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...