Quantitative Analysis of Meso-β-scale Convective Cells and Anvil Clouds over North China  

Quantitative Analysis of Meso-β-scale Convective Cells and Anvil Clouds over North China

在线阅读下载全文

作  者:林隐静 王洪庆 韩雷 郑永光 王玉 

机构地区:[1]Department of Atmospheric Science, School of Physics, Peking University [2]College of Information Science and Engineering, Ocean University of China [3]National Meteorological Center of CMA

出  处:《Advances in Atmospheric Sciences》2010年第5期1089-1098,共10页大气科学进展(英文版)

基  金:supported bythe National High Technology Research and Development Program of China (Grant No. 2006AA122106);the Na-tional Natural Science Foundation of China (Grant No.40875019) ;the Foundation of Basic Scientific Researchand Operation of Chinese Academy of Meteorological Sci-ence (Grant No. 2007Y004)

摘  要:This paper proposes several quantitative characteristics to study convective systems using observations from Doppler weather radars and geostationary satellites. Specifically, in order to measure the convective intensity of each system, a new index, named the "Convective Intensity Ratio" (CIR), is defined as the ratio between the area of strong radar echoes at the upper level and the size of the convective cell itself. Based on these quantitative characteristics, the evolution of convective cells, surface rainfall intensity, rainfall area and convectively generated anvil clouds can be studied, and the relationships between them can also be analyzed. After testing nine meso-β-scale convective systems over North China during 2006–2007, the results were as follows: (1) the CIR was highly correlated with surface rainfall intensity, and the correlation reached a maximum when the CIR led rainfall intensity by 6–30 mins. The maximum CIR could be at most ~30 mins before the maximum rainfall intensity. (2) Convective systems with larger maximum CIRs usually had colder cloud-tops. (3) The maximum area of anvil cloud appeared 0.5–1.5 h after rainfall intensity began to weaken. The maximum area of anvil cloud and the time lag between maximum rainfall intensity and the maximum area of anvil cloud both increased with the CIR.This paper proposes several quantitative characteristics to study convective systems using observations from Doppler weather radars and geostationary satellites. Specifically, in order to measure the convective intensity of each system, a new index, named the "Convective Intensity Ratio" (CIR), is defined as the ratio between the area of strong radar echoes at the upper level and the size of the convective cell itself. Based on these quantitative characteristics, the evolution of convective cells, surface rainfall intensity, rainfall area and convectively generated anvil clouds can be studied, and the relationships between them can also be analyzed. After testing nine meso-β-scale convective systems over North China during 2006–2007, the results were as follows: (1) the CIR was highly correlated with surface rainfall intensity, and the correlation reached a maximum when the CIR led rainfall intensity by 6–30 mins. The maximum CIR could be at most ~30 mins before the maximum rainfall intensity. (2) Convective systems with larger maximum CIRs usually had colder cloud-tops. (3) The maximum area of anvil cloud appeared 0.5–1.5 h after rainfall intensity began to weaken. The maximum area of anvil cloud and the time lag between maximum rainfall intensity and the maximum area of anvil cloud both increased with the CIR.

关 键 词:convective cell anvil cloud quantitative analysis weather radar geostationary satellite 

分 类 号:P421.31[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象