检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何禹清[1] 彭建春[2] 文明[1] 毛丽林[1]
机构地区:[1]湖南大学电气与信息工程学院,湖南省长沙市410082 [2]深圳大学机电与控制工程学院,广东省深圳市518060
出 处:《中国电机工程学报》2010年第28期12-18,共7页Proceedings of the CSEE
基 金:国家自然科学基金项目(50677015);湖南省自然科学基金项目(07JJ3106)~~
摘 要:风电出力的随机性使含风电(windpowergeneration,WPG)的配电网重构难以用传统模型来描述。构造了含风电的配电网重构的场景模型。该模型基于场景分析法并通过场景选择和场景电压来描述风电的随机出力及其影响,新模型能适应多风电和多风电场同时接入系统的情况。提出了一种适用于含风电的配电网重构场景模型的高效遗传算法。通过无不可行码的编码规则、初始种群产生、交叉操作和优生操作,使进化中只产生切合配电网实际的可行解。新算法在进化过程中基于场景电压进行物理寻优,大大减少了寻优时间和对初始种群的依赖。仿真计算结果验证了该模型和算法的有效性。The reconfiguration of distribution network with wind power generations (WPGs) could not be described by traditional methods because of the random output of the WPG. Aiming at this problem, a novel scenario distribution network reconfiguration model is presented. In this model, the scenario analysis method was applied to describe the random output of the WPG and its influence through the scenario selection and scenario voltage. Multiple WPGs and wind farms connected with a network was also considered in this model. And then, an efficient genetic algorithm was presented for the scenario distribution network reconfiguration model. Through the no unfeasible coding rule in the initial population strategy, cross strategy and eugenic strategy, individuals in the evolution always form the feasible solutions which can meet the requirement of the actual distribution network. Physical optimization based on scenario voltage in the process of evolution reduces the optimization time and the dependence of the initial population. The calculation results verify the feasibility of the proposed model and algorithm.
关 键 词:配电网 网络重构 分布式电源 风电机组 场景分析 遗传算法
分 类 号:TM711[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28