检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学航天工程与力学系
出 处:《哈尔滨工业大学学报》1999年第3期68-70,共3页Journal of Harbin Institute of Technology
摘 要:将正交异性材料看成理想塑性材料,在无量纲应力屈服准则及与之相关的流动法则下,利用特征场的一般方法,建立了平面应力问题的特征场.一阶拟线性方程组可能为双曲型,抛物型,椭圆型.在双曲型区域两族特征线互不正交.应力场的特征线与速度场的特征线互相重合.当材料退化为各向同性材料时,推导的结果能退化为希尔解或索柯洛夫斯基解.The mechanical behavior of the orthotropic materials is regarded as perfectly plastic in order to simplifythe analysis. The characteristic fields of plastic plane stress problems are construeted. By following dimensionlessStress Yield Criterion and the associated plastic flow rule. The quasi-linear differential equations may be hyperbolic,parabolic and elliptic. Two fdmilies Of characteristic lines in the hyperbolic region are not orthogonal. The character-istic lines of velocity coincide with those of stress field. When the orthotroPic materials degenerate to isotropic ones,the solution presented in this paper can degenerate tO that presented by Hill R or by Sokolovskii V V.
分 类 号:TB301[一般工业技术—材料科学与工程] O343.1[理学—固体力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3