检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学机械与汽车工程学院,广州510641 [2]广州中医药大学信息技术学院,广州510006
出 处:《计算机科学》2010年第10期267-270,共4页Computer Science
基 金:广东省科技攻关计划项目(No.2008B01040004)资助
摘 要:针对合成孔径雷达(SAR)图像灰度变化大、纹理复杂及边界模糊等特点提出了一种基于多特征的SAR图像的无监督分割方法。首先提取了SAR图像的局部矩特征与灰度共生矩阵的统计量(对比度、相关度、熵、同质性)特征;然后利用主元分析(PCA)的方法对这些有用的特征进行降维处理以得到含有足够类别信息的2维特征;最后使用MeanShift方法对具有2维特征信息的像素进行自动聚类。由于MeanShift聚类过程中无需提供类别数,因此,这种处理是一个无监督的自动分割过程。采用了多幅SAR图像和Brodatz纹理合成图像做分割实验,结果证明:本方法与单一利用灰度共生矩阵或矩特征的方法相比,分割的准确性明显提高。For synthetic aperture radar(SAR)images with the characteristics of complex texture,large brightness range and vague bridge boundary,a method of unsupervised SAR image segmentation based on multi-features was presented.First of all,features of the local moments and the statistics(contrast,correlation,entropy,homogeneity)of gray level co-occurrence matrix were extracted.Secondly,the dimensional reduction operation by principal component analysis(PCA)was applied to these extracted features in order to obtain 2-dimensional features with adequate category information.Finally,pixels with 2-D feature information were automatically clustered by the Mean Shift method.As the Mean Shift clustering method needn't provide the number of cluster,this processing is an unsupervised process of automatic segmentation.Composite image with Brodatz textures and SAR images were tested in segmenting experiments and the results demonstrate the method can achieve more accurate segmentation than other two methods in which only the gray level co-occurrence matrix or moments are employed.
关 键 词:SAR图像 纹理分割 多特征 Mean SHIFT
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33