检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜彩凤[1]
出 处:《科学技术与工程》2010年第27期6709-6711,共3页Science Technology and Engineering
摘 要:给定连通图集合Φ,对图G的生成子图F,如果F的每个分支都同构于集合Φ的一个元素,则F被称为G的Φ-因子。最近Kawarabayashi等证明了:2-连通立方图有一个{Cn|n≥4}-因子和{pn|n≥6}-因子,其中Cn表示阶为n的圈,Pn表示阶为n的路。Kano等给出了每一个阶至少为8的立方偶图有{Cn|n≥6}-因子和{pn|n≥8}-因子的结论,并且提出猜想:阶至少为6的3-连通立方图有{Cn|n≥5}-因子和{pn|n≥7}-因子。现给出这个猜想的证明。For a set Φ of connected graphs,a spanning subgraph F of a graph is called an Φ-factor if every component of F is isomorphic to a member of Φ.It was recently shown by Kawarabayashi et al.that every 2-connected cubic graph has a {Cn|n≥4}-factor and {pn|n≥6}-factor,where Cn denote the cycle of order n and Pn denote the path of order n.Kano et al.show that every connected cubic bipartite graph has a {Cn|n≥6}-factor and {pn|n≥8}-factor if its order is at least 8.And they have conjectured that every 3-connected cubic graph of order at least six has a{Cn|n≥5}-factor.A proof of this conjecture is given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171