基于地表温度和植被指数特征空间的农业干旱遥感监测方法研究综述  被引量:11

An Overview on Agricultural Drought Montoring Methods Based on Land Surface Temperature and Vegetation Index Feature Space

在线阅读下载全文

作  者:赵广敏[1] 李晓燕[1] 李宝毅[1] 

机构地区:[1]吉林大学地球科学学院,长春130010

出  处:《水土保持研究》2010年第5期245-250,共6页Research of Soil and Water Conservation

基  金:国家自然科学基金项目(40801208);吉林大学博士后基金;吉林大学基本业务经费项目

摘  要:遥感技术以其便捷、反映迅速、大范围监测等优点在农业旱情监测中得到广泛使用。通过遥感资料反演的地表温度(Ts)和植被指数(NDVI)不仅可以表征绿色植被的生理和生长状况,还能揭示植被土壤水分信息,反映作物受旱状况,但两者单独使用时存在缺陷。而基于地表温度和植被指数特征空间的干旱监测方法有利于统一定量标准来判别植被干旱情况,同时还解决了植物在受水分胁迫时短期内仍能保持原有绿色的时间滞后的问题,提高了旱情监测的准确度和实用性。该文以地表温度和植被指数特征空间干旱监测方法为基础,较为详细地阐述了各个方法的基本原理和适用范围,并结合实例归纳总结了与之相关的四种方法的优、缺点,进一步探讨了今后研究的重点。Remote sensing technology used in agriculture drought sensing frequently for advantage,quickly reaction,wide scope and so on.Both the land surface temperature(Ts) and the vegetation index(NDVI) derived from the data of remoting sensing can not only reveal information of physiol ogy and growth of green vegetation,but also indicate information of soil water and display drought-suffering content of green vegetation.Nevertheless,there still exists some limitations when only one of the two parameters is used.The two-dimensional feature space based on Ts and NDVI is good at unifying rational standards of drought distinction,and effectively improve the problem that the green vegetation turns slowly in the water-heat threat environment when drought occurs,the feature space also enhances the precision and the utility of agricultural drought monitoring.Based on the LST-NDVI approach,this paper makes a detailed description of the principle and serviceable rage of the methods,and sums up the advantages and disadvantages inapplication of the 4 methods with examples.Some problems worthy of further attention in this field are also discussed.

关 键 词:地表温度 植被指数 干旱监测 遥感 

分 类 号:P426.616[天文地球—大气科学及气象学] TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象