检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2010年第28期185-188,共4页Computer Engineering and Applications
基 金:国家教育部新世纪优秀人才支持计划No.NCET-05-0866;西北工业大学种子基金(No.200854)~~
摘 要:针对人脸识别中的光照变化问题,借鉴"分而治之"的思想,提出通过光照分类来提高不同光照情况下人脸的识别率。根据人脸图像灰度随光照变化的分布特点,将图像划分为三类:无偏光类、左偏光类和右偏光类,分别在不同的光照子集中对人脸图像进行处理与识别,并在YALEB人脸库上完成实验验证。结果表明,该方法不需要进行光照归一化处理,有效减弱了光照不均匀对人脸识别的影响,在提高识别率的同时降低了运算量,识别率可从未分类前的86.7%提高到99.6%,对于可变光照下的人脸识别有一定的应用前景。A novel approach based on illumination categorization is proposed to solve the problem of illumination variation in face recognition,learning from the thoughts of"divide and conquer".According to the gray level distribution of faces,illumination is grouped into three categories:Non-polarized,left-polarized and right-polarized illumination subsets.Then image processing and face recognition are implemented respectively in each subset.The experimental results on YALEB face database show that the proposed approach which is no need for illumination normalization weakens the impact of uneven illumination on face recognition effectively,and the recognition accuracy is improved from 86.7% of pre-categorization to 99.6%,furthermore,the computational complexity is reduced.This method can be applied in face recognition under variable lighting.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30