基于贝叶斯疑似度的启发式故障定位算法  被引量:15

Heuristic Fault Localization Algorithm Based on Bayesian Suspected Degree

在线阅读下载全文

作  者:张成[1,2] 廖建新[1,2] 朱晓民[1,2] 

机构地区:[1]北京邮电大学网络与交换技术国家重点实验室,北京100876 [2]东信北邮信息技术有限公司,北京100191

出  处:《软件学报》2010年第10期2610-2621,共12页Journal of Software

基  金:国家杰出青年科学基金No.60525110;国家重点基础研究发展计划(973)Nos.2007CB307100;2007CB307103;电子信息产业发展基金~~

摘  要:故障定位问题理论上已经证明为NP-Hard问题.为了降低计算复杂度,以概率加权的二分图作为故障传播模型,提出了一种基于贝叶斯疑似度的启发式故障定位算法(Bayesian suspected degree fault localization algorithm,简称BSD).引入贝叶斯疑似度,对所有故障仅计算一遍;同时采用增量覆盖方式,使算法具有较低的计算复杂度O(|F|×|S|).仿真实验结果表明,BSD算法具有较高的故障检测率和较低的故障误检率,即使在部分告警无法观察、告警丢失和虚假等情况下,算法依然具有较高的故障检测率.BSD算法具有多项式计算复杂度,可以满足大规模通信网故障定位的要求.Fault localization has theoretically been proven to be NP-hard. This paper takes a weighted bipartite graph, as fault propagation model, and proposes a heuristic fault localization algorithm based on Bayesian suspected degree (BSD) to reduce the computational complexity. It introduces a metric of BSD, which needs only to be calculated once, and uses incremental coverage, which makes the algorithm a low computation complexity O(|F|×|S|). Simulation results show that the algorithm has a high fault detection rate as well as low false positive rate and performs well even in the presence of unobserved and suspicious alarms. The algorithm, which has a polynomial computational complexity, can be applied to a large-scale communication network.

关 键 词:故障管理 故障诊断 故障定位 故障传播模型 贝叶斯公式 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象