检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mechatronics Engineering and Automation,Shanghai University
出 处:《Journal of Shanghai University(English Edition)》2010年第5期359-364,共6页上海大学学报(英文版)
基 金:Project supported by the Shanghai Science and Technology Nano-tech Special Foundation(Grant No.0852nm06800)
摘 要:Nano-manipulation technology is an emerging field in the development of modern science and technology. Atomic force microscope (AFM), a sharp weapon for nano imaging and nanomanipulation, which is honored as "eye" and "hand" of nano-technology. However, due to the hysteresis, creep and other nonlinearity of piezoelectric ceramics tube (PZT) as well as the probe's tip deviations caused by cantilever deformation, AFM has larger error of relative displacement between probe and sample, which creates enormous inconvenience to the nano-manipulation and repositioning. As to improve positioning accuracy, this dissertation presents a novel AFM's X-Y dimensional nano-positioning control system with large-scale based on H∞ control. Through careful research on variety of influence factors on AFM's precise nano-manipulation, a composite control strategy based on feedforward compensation control of cantilever probe tip's offset and H∞ control of piezoelectric scanner is presented in this paper. In the end, simulation results can also testify the tracking ability and better nano-positioning performance of the system.Nano-manipulation technology is an emerging field in the development of modern science and technology. Atomic force microscope (AFM), a sharp weapon for nano imaging and nanomanipulation, which is honored as "eye" and "hand" of nano-technology. However, due to the hysteresis, creep and other nonlinearity of piezoelectric ceramics tube (PZT) as well as the probe's tip deviations caused by cantilever deformation, AFM has larger error of relative displacement between probe and sample, which creates enormous inconvenience to the nano-manipulation and repositioning. As to improve positioning accuracy, this dissertation presents a novel AFM's X-Y dimensional nano-positioning control system with large-scale based on H∞ control. Through careful research on variety of influence factors on AFM's precise nano-manipulation, a composite control strategy based on feedforward compensation control of cantilever probe tip's offset and H∞ control of piezoelectric scanner is presented in this paper. In the end, simulation results can also testify the tracking ability and better nano-positioning performance of the system.
关 键 词:atomic force microscope (AFM) nano-manipulation nano-reposition H∞ control
分 类 号:TB383.1[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7