Lunar noise correlation,imaging and monitoring  被引量:3

Lunar noise correlation,imaging and monitoring

在线阅读下载全文

作  者:Christoph Sens-Schnfelder Eric Larose 

机构地区:[1]Institute for Geophysics and Geology,Universitt Leipzig [2]Laboratoire de Géophysique Interne et Tectonophysique,CNRS and Université Joseph Fourier

出  处:《Earthquake Science》2010年第5期519-530,共12页地震学报(英文版)

摘  要:Passive seismic techniques have revolutionarised seismology, leading for example to increased resolution in surface wave tomography, to the possibility to monitor changes in the propagation medium, and to many new processing strategies in seismic exploration. Here we review applications of the new techniques to a very particular dataset, namely data from the Apollo 17 lunar network. The special conditions of the lunar noise environment are investigated, illustrating the interplay between the properties of the noise and the ability to reconstruct Green's functions. With a dispersion analysis of reconstructed Rayleigh waves new information about the shallow shear velocity structure of the Moon are obtained. Passive image interferometry is used to study the effect of temperature changes in the subsurface on the seismic velocities providing direct observation of a dynamic process in the lunar environment. These applications highlight the potential of passive techniques for terrestrial and planetary seismology.Passive seismic techniques have revolutionarised seismology, leading for example to increased resolution in surface wave tomography, to the possibility to monitor changes in the propagation medium, and to many new processing strategies in seismic exploration. Here we review applications of the new techniques to a very particular dataset, namely data from the Apollo 17 lunar network. The special conditions of the lunar noise environment are investigated, illustrating the interplay between the properties of the noise and the ability to reconstruct Green's functions. With a dispersion analysis of reconstructed Rayleigh waves new information about the shallow shear velocity structure of the Moon are obtained. Passive image interferometry is used to study the effect of temperature changes in the subsurface on the seismic velocities providing direct observation of a dynamic process in the lunar environment. These applications highlight the potential of passive techniques for terrestrial and planetary seismology.

关 键 词:MOON MONITORING passive image interferometry noise planetary seismology 

分 类 号:P315[天文地球—地震学] P35[天文地球—固体地球物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象