检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:荆献勇[1] 肖明清[1] 余文波[2] 赵鑫[1]
机构地区:[1]空军工程大学工程学院,陕西西安710038 [2]北京航空工程技术研究中心,北京100076
出 处:《系统工程与电子技术》2010年第10期2136-2140,共5页Systems Engineering and Electronics
基 金:"十一五"国防预先研究项目(51317030103)资助课题
摘 要:基于过程神经网络(procedure neural network,PNN)建立了具有高精确度的多步预测模型。针对PNN训练过程复杂的特点,提出了一种基于正交基函数展开和矢量矩免疫算法(vector distance based i mmunealgorithm,VD-IA)相结合的PNN训练方法。根据PNN在三角函数正交基展开形式下的数学模型,推导出适用于VD-IA的优化问题模型,采用一种自适应策略加快了VD-IA的收敛速度。基于Mackey-Glass混沌序列检验了该方法的有效性,将该方法与BP训练方法、改进粒子群优化(i mproved particle swarmopti mization,IPSO)算法进行了对比分析。仿真结果表明,基于VD-IA的PNN训练方法可以获得较优的结果,且获得泛化性能较好的PNN模型。A multi-steps forecast model possessing high precision based on procedure neural network(PNN) is established.Aiming at the complexity of training PNN,a new algorithm based on combining orthogonal function basis expansion and vector distance based immune algorithm(VD-IA) is proposed.The mathematic model of PNN that is expressed based on orthogonal trigonometric function basis is used to deduce the optimization model suitable to the VD-IA.An adaptive strategy is designed to obtain quick convergence process.The validity of the proposed method is vertified by Mackey-Glass chaotic sequence and is compared with both BP algorithm and improved particle swarm optimization(IPSO) algorithm.Simulation results show that the outstanding results can be obtained by using VD-IA,and the generalization performance of the IA-PNN is also outstanding.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.78