Three dimensional large deformation analysis of phase transformation in shape memory alloys  

Three dimensional large deformation analysis of phase transformation in shape memory alloys

在线阅读下载全文

作  者:夏天明 潘同燕 刘山洪 

机构地区:[1]Division of Engineering,Colorado School of Mines [2]Department of Civil and Environmental Engineering,Virginia Tech [3]Department of Bridge Engineering,Chongqing Jiaotong University

出  处:《Applied Mathematics and Mechanics(English Edition)》2010年第10期1261-1272,共12页应用数学和力学(英文版)

摘  要:Shape memory alloys(SMAs)have been explored as smart materials and used as dampers,actuator elements,and smart sensors.An important character of SMAs is its ability to recover all of its large deformations in mechanical loading-unloading cycles without showing permanent deformation.This paper presents a stress-induced phenomenological constitutive equation for SMAs,which can be used to describe the superelastic hysteresis loops and phase transformation between Martensite and Austenite.The Martensite fraction of SMAs is assumed to be dependent on deviatoric stress tensor.Therefore,phase transformation of SMAs is volume preserving during the phase transformation.The model is implemented in large deformation finite element code and cast in the updated Lagrangian scheme.In order to use the Cauchy stress and the linear strain in constitutive laws,a frame indifferent stress objective rate has to be used.In this paper,the Jaumann stress rate is used.Results of the numerical experiments conducted in this study show that the superelastic hysteresis loops arising with the phase transformation can be effectively captured.Shape memory alloys(SMAs)have been explored as smart materials and used as dampers,actuator elements,and smart sensors.An important character of SMAs is its ability to recover all of its large deformations in mechanical loading-unloading cycles without showing permanent deformation.This paper presents a stress-induced phenomenological constitutive equation for SMAs,which can be used to describe the superelastic hysteresis loops and phase transformation between Martensite and Austenite.The Martensite fraction of SMAs is assumed to be dependent on deviatoric stress tensor.Therefore,phase transformation of SMAs is volume preserving during the phase transformation.The model is implemented in large deformation finite element code and cast in the updated Lagrangian scheme.In order to use the Cauchy stress and the linear strain in constitutive laws,a frame indifferent stress objective rate has to be used.In this paper,the Jaumann stress rate is used.Results of the numerical experiments conducted in this study show that the superelastic hysteresis loops arising with the phase transformation can be effectively captured.

关 键 词:shape memory alloys phase transformation SUPERELASTICITY large deformation finite element 

分 类 号:TG139.6[一般工业技术—材料科学与工程] TB324[金属学及工艺—合金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象