多蚁群分级优化的多目标求解方法  被引量:3

New method for multi-objective optimization problem based on multi-ant-colony algorithm

在线阅读下载全文

作  者:刘道华[1] 李为华[1] 李湘英[1] 

机构地区:[1]信阳师范学院计算机与信息技术学院,河南信阳464000

出  处:《计算机应用研究》2010年第10期3705-3707,3717,共4页Application Research of Computers

基  金:河南省自然科学基金资助项目(2010040818);河南省教育厅青年骨干教师计划资助项目;河南省教育厅自然基础计划资助项目(2010A520034)

摘  要:为提高多目标优化方法的求解性能,在给出了蚁群算法优化函数类问题求解方法的基础上,提出了基于多蚁群分级优化多目标问题的求解方法。构建了子蚁群以自身启发式信息及以其他子群的启发式信息获得准Pareto解以及采用各子群的每一只蚂蚁获得的准Pareto解作支配判断,从而提高Pareto解的多样性;构建了父蚁群以准Pareto解作为空间节点构成TSP类似的组合优化问题,其求解结果以获得多目标优化问题的Pareto解的前沿,从而提高Pareto解的均匀分布性。通过优化实例验证,结果表明,多蚁群分级优化的多目标求解方法所获得的Pareto解具有解的多样性以及解的均匀分布性。In order to improve the solving performance of multi-objective optimization problem,this paper proposed a new method based on multi-ant-colony algorithms. Aiming to enhance the diversity of Pareto solutions,quasi-Pareto solutions were constructed by sub-ant-colony algorithm which adopted its own and other sub-ant-colony heuristic information and quasi-Pareto solutions obtained by every ant were used for control judgment. The constructed farther-group ants with the quasi-Pareto solutions which act as space nodes constitute TSP( traveling salesman problem) ,and then the solutions of the TSP act as the front of solutions for multi-objective optimization problem,hence lead to the enhancement of the uniform distribution of Pareto solutions. Experiment results show that the obtained Pareto solutions by multi-ant-colony optimization based on multi-classification methods have many advantages,such as the diversity and uniform distribution of solutions.

关 键 词:多蚁群算法 多目标优化 函数优化 动态距离调整 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象