Synthesis of Polyaniline-Fe_3O_4 Nanocomposites and Their Conductivity and Magnetic Properties  

Synthesis of Polyaniline–Fe_3O_4 Nanocomposites and Their Conductivity and Magnetic Properties

在线阅读下载全文

作  者:冷春江 

机构地区:[1]Key Laboratory of Artificial Microand Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University

出  处:《Journal of Wuhan University of Technology(Materials Science)》2010年第5期760-764,共5页武汉理工大学学报(材料科学英文版)

基  金:Funded by National Natural Science Foundation of China(No.10974148);Sub-project of State Key Development Program of Basic Research of China(Nos. 2009CB939704 and 2009CB939705)

摘  要:By using inorganic Fe3O4 nanoparticles of different content as nucleation sites, PAn-Fe3O4 nanorods were successfully synthesized through a simple, conventional, and inexpensive one-step in-situ polymerization method. The TEM images revealed the size and morphology of the resultant nanocomposite. The EDS pattern confirmed the existence of Fe3O4 in the composite. The FT-IR spectral analysis confirmed the formation of PAn encapsulated Fe3O4 nanocomposite. With the content of Fe3O4 increasing, the conductivity of the nanocomposites gradually decreases, meanwhile, the saturation magnetization increases and reveals a super paramagnetic behavior. With controllable electrical, magnetic, and electromagnetic properties, the well-prepared nanocomposites may have the potential applications in chemical sensors, catalysis, microwave absorbing, and electro-magneto-rheological fluids, etc.By using inorganic Fe3O4 nanoparticles of different content as nucleation sites, PAn-Fe3O4 nanorods were successfully synthesized through a simple, conventional, and inexpensive one-step in-situ polymerization method. The TEM images revealed the size and morphology of the resultant nanocomposite. The EDS pattern confirmed the existence of Fe3O4 in the composite. The FT-IR spectral analysis confirmed the formation of PAn encapsulated Fe3O4 nanocomposite. With the content of Fe3O4 increasing, the conductivity of the nanocomposites gradually decreases, meanwhile, the saturation magnetization increases and reveals a super paramagnetic behavior. With controllable electrical, magnetic, and electromagnetic properties, the well-prepared nanocomposites may have the potential applications in chemical sensors, catalysis, microwave absorbing, and electro-magneto-rheological fluids, etc.

关 键 词:POLYANILINE FE3O4 NANOCOMPOSITES CONDUCTIVITY super paramagnetism 

分 类 号:TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象