Catalytic properties of Ni/ceria-yttria electrode materials for partial oxidation of methane  被引量:1

Catalytic properties of Ni/ceria-yttria electrode materials for partial oxidation of methane

在线阅读下载全文

作  者:Shaohua Zeng Lei Wang Maochu Gong Yaoqiang Chen 

机构地区:[1]Key Laboratory of Green Chemistry & Technology of Ministry Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China

出  处:《Journal of Natural Gas Chemistry》2010年第5期509-514,共6页天然气化学杂志(英文版)

基  金:supported by the National Basic Research Program of China (973 Program) (No. 2005CB221404)

摘  要:The catalytic properties of electrode materials Ni/Ce1-xYxO2-δ (x = 0.05, 0.10, 0.15 and 0.20) were investigated for partial oxidation of methane (POM). The CeO2-Y2O3 solid solutions were prepared by co-precipitaion method. The Ni-based catalysts supported on the solid solutions were obtained using the impregnation method. Structural, surface and redox characteristics of the prepared catalysts were system- atically examined by means of X-ray diffraction (XRD), N2 adsorption-desorption (Brunauer-Emmet-Teller BET method), H2 temperature- programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) methods. The results indicated that yttria doped in the ceria system, forming a good solid solution, readily induced more defects and oxygen vacancies that favored the improvement of catalytic activity and coking resistance. In the temperature range of 600-850 ℃, Ni/Ce0.90Y0.10O1.950 catalyst exhibited the best catalytic activity among the four tested catalysts, with the CH4 conversion, CO selectivity and H2 selectivity of 78.8%, 90.6% and 89.8%, respectively, at 850 ℃. And the H2/CO molar ratio in products of Ni/Ce0.90Y0.10O1.950 catalyst was closer to the theoretical value of 2.0. The excellent coking resistant behaviors for all catalysts were clearly manifested by thermal analysis.The catalytic properties of electrode materials Ni/Ce1-xYxO2-δ (x = 0.05, 0.10, 0.15 and 0.20) were investigated for partial oxidation of methane (POM). The CeO2-Y2O3 solid solutions were prepared by co-precipitaion method. The Ni-based catalysts supported on the solid solutions were obtained using the impregnation method. Structural, surface and redox characteristics of the prepared catalysts were system- atically examined by means of X-ray diffraction (XRD), N2 adsorption-desorption (Brunauer-Emmet-Teller BET method), H2 temperature- programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) methods. The results indicated that yttria doped in the ceria system, forming a good solid solution, readily induced more defects and oxygen vacancies that favored the improvement of catalytic activity and coking resistance. In the temperature range of 600-850 ℃, Ni/Ce0.90Y0.10O1.950 catalyst exhibited the best catalytic activity among the four tested catalysts, with the CH4 conversion, CO selectivity and H2 selectivity of 78.8%, 90.6% and 89.8%, respectively, at 850 ℃. And the H2/CO molar ratio in products of Ni/Ce0.90Y0.10O1.950 catalyst was closer to the theoretical value of 2.0. The excellent coking resistant behaviors for all catalysts were clearly manifested by thermal analysis.

关 键 词:METHANE partial oxidation yttria-doped ceria solid oxide fuel cells 

分 类 号:O643.36[理学—物理化学] TE665.3[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象