检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国药科大学基础部 [2]江苏正大天晴药业股份有限公司,江苏南京210009
出 处:《中国医药工业杂志》2010年第10期743-747,共5页Chinese Journal of Pharmaceuticals
摘 要:为更精确地关联预测药物在超临界流体中的溶解度,提出了遗传算法(GA)与LM-反向传播人工神经网络相结合(GA-LM-BPANN)的模型,并设计了该模型的计算过程,讨论了模型参数的设置。用该模型计算了温度(308~348K)和压力(122~355bar)条件下药物(非那吡啶)在超临界CO2中溶解度。结果表明,计算值与实测值的平均相对误差(AARD)为1.53%,测试集的AARD为3.32%。用Bartle半经验方程得到的计算值与实测值的AARD为14.6%。可见,与Bartle半经验方程相比,GA-LM-BPANN模型的关联和预测精度高,关联范围广。A GA-LM-BP ANN based on genetic algorithm(GA) and LM-BP artificial neural network was developed for more accurate correlation and prediction of drug solubility in supercritical fluid.Implementation procedure and parameters setting of this model were introduced in detail.The designed GA-LM-BP ANN with optimized parameters was used to calculate the solubilities of phenazopyridine in supercritical CO2 system at temperature range of 308 348 K and pressure range of 122-355 bar.The calculated results were very close to the experimental solubility values.The average relative deviation(AARD) was 1.53%,and the AARD for the test set was 3.32%.The AARD between calculated results of semi-empirical Bartle model and experimental values was 14.6%.Compared with semi-empirical Bartle model,GA-LM-BP ANN showed less error and wider fitting range.
关 键 词:遗传算法-LM-反向传播人工神经网络 超临界流体 非那吡啶 溶解度
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28