一种分数低阶统计量广义恒模盲多用户检测算法  被引量:2

A Fractional Lower Order Statistics based Generalized Constant Modulus Algorithm for Blind Multi-user Detection

在线阅读下载全文

作  者:夏伟娟[1] 朱立东[1] 熊兴中[1,2] 

机构地区:[1]电子科技大学通信抗干扰技术国家级重点实验室,成都611731 [2]四川理工学院,自贡643000

出  处:《信号处理》2010年第10期1510-1515,共6页Journal of Signal Processing

基  金:部级预研基金项目资助(编号:9140A220309090C0201);国家自然科学基金资助(编号:60971081)

摘  要:针对实际盲多用户检测系统中存在的大量噪声呈现非高斯性,而这种非高斯性使基于高斯噪声假定下的恒模盲多用户检测算法的性能显著退化甚至不能正常工作,本文提出了一种分数低阶统计量的广义恒模盲多用户检测算法。该算法是分数低阶统计量恒模算法的推广,能有效地应对非高斯噪声的影响,具有广泛的适用性。通过以DS-CMDA系统为例,将分数低阶统计量广义恒模盲多用户检测算法与传统恒模盲多用户检测算法(CMA)、分数低阶统计量恒模盲多用户检测算法(FLOS-CMA)进行了对比,实验仿真结果表明:无论在高斯白噪声下还是在α稳定分布噪声下,分数低阶统计量广义恒模盲多用户检测算法均具有良好的抗多址干扰和抑制噪声的性能,并且该算法具有更快的收敛速度。A lot of ambient noises are non-Gaussian in actual blind multi-user detection systems,and non-Gaussianity often results in significant performance degradation or even invalidation to constant modulus blind multi-user detection algorithm with the channel model premised upon the Gaussian noise assumption.Alpha-stable distributions are one of the most important non-Gaussian models and can provide useful model for many phenomena observed in different fields.Facing with this problem,we present a fractional lower order statistics based generalized constant modulus algorithm(FLOS-GCMA).This FLOS-GCMA,which is a generalization of FLOSCMA, can work efficiently under non-Gaussian noise condition and can be used in many areas.With DS-CDMA system as an example,we compare our algorithm with the constant modulus algorithm(CMA) and fractional lower order statistics based constant modulus algorithm (FLOS-CMA) analytically and numerically.The simulation results show that FLOS-GCMA can suppress multiple access interference (MAI) and non-Gaussian noise effectively.and converges fast either under Gaussian noise or aloha-stable distributed noise environment.

关 键 词:码分多址 盲多用户检测 恒模算法 Α稳定分布 分数低阶统计量 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象