Arcobacter butzleri脂蛋白的in silico方法鉴定与功能分析  

Identification and function analysis on putative lipoproteins of Arcobacter butzleri by in silico approaches

在线阅读下载全文

作  者:孙理云[1] 

机构地区:[1]河南科技大学动物科技学院,洛阳471003

出  处:《中国人兽共患病学报》2010年第10期974-978,共5页Chinese Journal of Zoonoses

基  金:河南科技大学人才科研基金(05-10)资助

摘  要:目的鉴别已公布基因组序列的Arcobacter butzleri RM4018株的脂蛋白(Lpp)。方法首先从GenBank获取由A.butzleriRM4018基因组推测的蛋白质氨基酸序列,然后利用Lpp预测软件PrositeScan和DOLOP预测05ZYH33株的Lpp,采用SignalP 3.0 HMM、PrediSi、Phobius、LipoP-HMM和TMHMM version 2.0分析预测的Lpp的信号肽,然后经"多数票决法"确定Lpp;最后利用InterProScan和BlastP服务器对鉴定的Lpp进行功能分析。结果鉴定出54种Lpp,占A.butzleri蛋白质组的2.435%。经分析,约28种Lpp的脂蛋白盒基序为〔F〕〔ASTV〕〔GA〕C,约6种为〔L〕〔ASTV〕〔GA〕C。34种蛋白为假定蛋白,功能未知;YP_001489204、YP_001489480和YP_001491078等3种Lpp为酶类,YP_001489759、YP_001489957、YP_001491044、YP_001491046、YP_001491105和YP_001491107等6种与细菌的物质运输/药物抗性有关。YP_001489154是鞭毛成分;YP_001489112是补体结合蛋白,可能与细菌逃避宿主的免疫功能有关。结论这些资料提示一些Lpp可能在A.butzleriRM4018的生理和致病性方面具有作用。To identify putative lipoproteins of Arcobacter butzleri,the ScanProsite feature of PROSITE and DOLOP lipoprotein prediction tool were firstly used to identify putative lipoproteins in the recently published genome of Arcobacter butzleri strain RM4018.Then,the identified putative lipoproteins were validated to exclude the false positive by a majority vote' approach following by analysis with standard tools for signal peptide verification.Finally,the putative functions of individual lipoproteins were analyzed by reference from the identification of conserved domains of InterPro.Homologous proteins were identified by unfiltered BlastP homology searches including conserved domain detection.Among the 56 identified putative lipoproteins,54 were validated as lipoprotein and 2 as false positive lipoproteins.The 34 out of 54 validated lipoproteins were hypothetical proteins and in which known function domains were not found.It' indicated that lipoproteins might contribute to the physiology of Arcobacter butzleri and influence its virulence.

关 键 词:Arcobacter butzleri 脂蛋白 生物信息学分析 功能预测 

分 类 号:R378[医药卫生—病原生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象