Simulation Study of SVM-Based Approach in Extracting Parameters for Electromagnetic Detection of Buried Object  

Simulation Study of SVM-Based Approach in Extracting Parameters for Electromagnetic Detection of Buried Object

在线阅读下载全文

作  者:ZHANG Qinghe HE Siyuan ZHU Guoqiang 

机构地区:[1]School of Science, China Three Gorges University, Yichang443002, Hubei, China [2]School of Electronic Information, Wuhan University,Wuhan 430072, Hubei, China

出  处:《Wuhan University Journal of Natural Sciences》2010年第6期510-515,共6页武汉大学学报(自然科学英文版)

基  金:Supported by the National Natural Science Foundation of China (50679037,60671040)

摘  要:In this paper,a new method for extracting the parameters of buried object is proposed.The center position and dielectric properties of 2-D buried object are estimated by means of a regression technique based on support vector machine(SVM).The proposed method,after a proper training procedure,is able to reconstruct the center position and dielectric properties of a buried object inside a given investigation domain.Numerical simulation results indicate that SVM-based approach shows higher accuracy than the back-propagation neural networks(BPNN) algorithm.In this paper,a new method for extracting the parameters of buried object is proposed.The center position and dielectric properties of 2-D buried object are estimated by means of a regression technique based on support vector machine(SVM).The proposed method,after a proper training procedure,is able to reconstruct the center position and dielectric properties of a buried object inside a given investigation domain.Numerical simulation results indicate that SVM-based approach shows higher accuracy than the back-propagation neural networks(BPNN) algorithm.

关 键 词:buried object detection inverse scattering support vector machine(SVM) 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置] V328[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象