检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘建军[1] 祝一薇[1] 李新光[1] 夏胜平[1] 郁文贤[2]
机构地区:[1]国防科技大学电子科学与工程学院ATR重点实验室,长沙410073 [2]上海交通大学电子信息与电气工程学院,上海200030
出 处:《计算机工程》2010年第21期181-184,187,共5页Computer Engineering
基 金:国家自然科学基金资助项目(60972114)
摘 要:基于类属超图模型给出简单图像和复杂图像目标的识别方法。通过提取简单图像的稳健尺度不变特征变换特征,得到其对应的属性图,采用RSOM聚类树的思想和K近邻方法快速实现对简单图像的目标识别。复杂图像存在较大的背景干扰和遮挡的影响,通过滑动窗方法在待识别图像中定位待识别目标区域,并将该区域从待识别图像中分出,然后采用与简单图像识别方法类似的方法完成目标识别,减少背景干扰和遮挡的影响。仿真实验表明,2种图像目标识别方法是有效的。This paper proposes object recognition methods for images with simple imaging conditions and challenging imaging conditions, which are based on Class Specific Hyper Graph(CSHG) model. In the process of recognition for images with simple imaging conditions, it extracts their robust Scale Invariant Feature Transform(SIFT) features and describe them using graphs. The objects in test images are recognized efficiently by using a RSOM clustering tree and K-nearest neighbor method. In the process of recognition for images with challenging imaging conditions, the approximate interest object regions in test image are located by sliding window method. The approximate object regions are expanded or shrunk iteratively and their corresponding graphs matche to graphs in CSHG model. The exact object regions are located by checking the number oi matching features and segmented from test images. K-nearest neighbor graphs of the object regions are obtained in CSHG model and final recognition decision are made by using a majority voting strategy. Experimental results demonstrate that the methods are effective.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171