检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京师范大学发展心理研究所,北京100875 [2]中央财经大学社会发展学院心理学系,北京100081
出 处:《数学教育学报》2010年第5期59-63,共5页Journal of Mathematics Education
基 金:国家自然科学基金资助项目——分数概念的发展及其空间表征特点研究(30970909);全国教育科学“十一五”规划课题资助项目——数学学优生的认知特点及其影响因素研究(EBA080303)
摘 要:获得正确的分数概念有助于学生更好地理解数的连续性与可分割性.Stafylidou等人(2004)曾提出学生要经历从低到高的如下3个层次:将分数表征为两个互相独立的自然数,将分数表征为“部分一整体”关系,将分数表征为两个数的比例.基于该理论框架考察了199名五至八年级学生的分数概念发展情况及其错误概念类型.结果表明:(1)我国儿童分数概念发展较好.随着年级的升高,分数概念发展水平逐步升高,具体表现为在低层次上人数减少,高层次上人数增加.(2)儿童分数理解中常出现的错误概念如下:整数偏向现象、对数字“1”理解有误、由“部分一整体”关系导致概念理解错误等.The purpose of the present research was to reveal Chinese students' understanding of the concept of fraction. 199 students were tested using a questionnaire that required them to make judgments about fraction size and to order a set of given fractions, justifying their responses. Responses were grouped into categories that revealed three main explanatory frameworks (Stafylidou & Vosniadou, 2004). The first explanatory framework was that fraction is consisted of two independent numbers. The second considered the fraction as a part of whole, and the third understood the relationship between the numerator and the denominator. Results indicated agesrelated increases in Chinese students' understanding of the numerical value of fractions, and there was misconception about fraction such as whole number bias.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38