检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鞠杨[1] 盛国华[1,2] 刘红彬[1] 王会杰[1]
机构地区:[1]中国矿业大学煤炭资源与安全开采国家重点实验室,岩石混凝土破坏力学北京市重点实验室,北京100083 [2]东北大学资源与土木工程学院,沈阳110004
出 处:《中国科学:技术科学》2010年第12期1437-1451,共15页Scientia Sinica(Technologica)
基 金:国家自然科学基金(批准号:50974125);国家重点基础研究发展计划("973"计划)(批准号:2010CB226804;2002CB412705);北京市教委资助项目
摘 要:利用5种钢纤维掺量活性粉末混凝土(RPC)圆柱形试件的SHPB冲击压缩实验研究了10×100~1.1×102s?1应变率范围内RPC的动态力学性能,分析了不同应变率和钢纤维掺量下RPC的应力波动特征、破坏模式、强度及耗能能力的变化规律以及应变率和钢纤维掺量的影响.提出了不同应变率和钢纤维掺量条件下RPC动态应力-应变响应的基本模式与本构模型.研究表明:应力波作用下素RPC的应力响应高于应变响应,脆性特征显著.掺入适量钢纤维后,RPC碎裂时的应变率和变形能力较素RPC有明显提高.相同钢纤维掺量下,应变率增加时,RPC的峰值抗压强度、峰值应变和残余应变均有不同程度的提高,其中残余应变提高的幅度最大.相同应变率条件下,提高钢纤维掺量对于改善RPC碎裂后的残余变形能力作用不大.钢纤维对RPC峰值抗压强度和峰值变形能力的影响不同,相同应变率下,钢纤维率不超过1.75%时,峰值抗压强度随纤维率增加而增加;纤维率超过1.75%后,峰值抗压强度开始逐步下降;峰值应变随钢纤维掺量增加而持续增大.相同应变率下,从冲击开始至残余变形阶段RPC的总耗能Edisp随钢纤维掺量增加而逐步提高,但纤维率超过2%后总耗能Edisp则开始逐步下降.不同变形阶段钢纤维对RPC耗能所起的作用不同.钢纤维率不超过2%时,钢纤维对提高峰值变形前耗能的作用大于对提高峰值变形后耗能的作用.应变率对总耗能和各阶段耗能均有显著影响,应变率越高,各阶段的耗能越大,动态冲击时的韧性越好.给出了RPC峰值抗压强度、峰值变形、残余变形,以及各阶段耗能随应变率和钢纤维率变化的经验模型.采用标准化的应力和应变作为广义应力与广义应变,以应变率和钢纤维率为界,将RPC的动态应力-应变响应模式简化为4类基本模型,并给出了每类模型的数学表达式.
关 键 词:冲击 活性粉末混凝土(RPC)高应变率 动态强度 耗能 动态应力-应变响应
分 类 号:TU528.572[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229