检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王连加[1]
出 处:《计算机仿真》2010年第11期254-257,共4页Computer Simulation
摘 要:关于掌纹特征提取要求提高识别率,局部二值模式(LBP)掌纹识别,提取的特征维数高,特征之间存在一定冗余,导致掌纹识别率较低。为了提高掌纹识别率,提出一种主成份分析(PCA)的LBP的掌纹特征提取方法(PCA-LBP)。首先对掌纹图像进行灰度预测,采用LBP算法计算灰度直方图,得到256个灰度对应的像素数据,将其作为掌纹图像的原始特征,用主成分分析方法消除各特征之间的高度冗余性,并有效地降低了特征集的维数,得到了最有利于识别的最佳特征。根据最小欧式距离判别法对掌纹图像的进行识别,对PolyU标准库中的掌纹进行仿真实验,结果表明,相比传统的LBP算法和离散小波变换提取算法,可以提较少的特征维数取得了更高的的识别率,说明改进算法既不会丢失掌纹图像的原有信息,提高了识别率。n recent years,local binary pattern(LBP) has been successfully applied to face recognition.However,the dimensionality of the feature vector extracted by LBP is usually very high,then prediction accuracy is very low.In order to improve the accuracy of palmprint recognition,a new method was proposed based on principal component analysis(PCA) and local binary pattern..Firstly,the pixel values of the palmprint diagram were predicted and used as the original features palmprint image,and then he principal component analysis method was used to eliminate the high redundancy in the characteristics extracted,which effectively reduced the dimensions of the characteristics and obtained the features for identification.Finally,minimum Euclid distance was used to implement the palmprint image classification.Simulation experiment results based on the standard library PolyU show that this method not only has advantages in terms of time,but complete identification with less palmprint images and the recognition rate is significantly enhanced.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117