检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林丽娟[1] 徐涵秋[1] 陈静洁[1] 林冬凤[1] 杜丽萍[1]
机构地区:[1]福州大学环境与资源学院,福州大学遥感信息工程研究所,福建福州350108
出 处:《遥感技术与应用》2010年第5期619-626,共8页Remote Sensing Technology and Application
基 金:国家自然科学基金项目(40371107);福建省教育厅重点项目(JK2009004)资助
摘 要:遥感影像的融合是遥感界的一个研究热点。根据数据源的不同,影像融合可分为异源传感器影像融合和同源传感器影像融合。以TM与SPOT作为异源影像融合的例子,以IKONOS的MS与Pan作为同源影像融合的例子,用5种算法对两种融合类型进行实验与比较。结果表明,同源传感器影像的融合效果好于异源传感器影像的融合效果;不同的融合算法在异源和同源传感器影像融合中的表现不尽相同。SVR变换可同时应用于异源及同源传感器影像的融合,且在提高影像空间分辨率、信息量和清晰度的同时能很好地保持原始多光谱影像的光谱特征。SFIM虽然也可以在两种数据源的融合实验中获得较好的融合效果,但其高频信息融入度最差。MB虽然提高了融合影像的高频信息融入程度,但光谱保真度、信息量和清晰度却不理想。Ehlers适用于异源传感器影像间的融合,而WT则适用于同源传感器影像的融合。Satellite image fusion is always a focus in remote sensing field.According to data sources differ-ence,image fusion can be divided into two broad categories:fusion of images using different sensors data and using same sensor data.Five recently proposed/modified fusion algorithms have been employed to test the fusion results of the two categories.The image pair,TM+SPOT pan,was used to test fusion between different image sources,while the pair,IKONOS MS+pan,was employed to test fusion between same sen-sor data.The study reveals that the overall results of fusion between same sensor data are better than those of fusion between different sensors image sources.The selected fusion algorithms have different perform-ance in image fusion results between the two categories.The SVR transform is suitable for both categories of image fusion.It can greatly improve the spatial resolution,information quantity and clarity,but retain spectral information of the original multispectral image.The SFIM-fused image has the highest spectral fi-delity in both categories of image fusion,but has the lowest spatial frequency information gain.Although the MB transform can improve the spatial resolution of the original image,it generally failed to improve spectral fidelity,information quantity and clarity.The Ehlers transform is more suitable for image fusion between different sensors data while the WT is more applicable to image fusion between same sensor data.
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249