Inhibitory actions of mibefradil on steroidogenesis in mouse Leydig cells: involvement of Ca^2+ entry via the T-type Ca^2+ channel  被引量:1

Inhibitory actions of mibefradil on steroidogenesis in mouse Leydig cells: involvement of Ca^2+ entry via the T-type Ca^2+ channel

在线阅读下载全文

作  者:Jae-Ho Lee Jong-Uk Kim Changhoon Kim Churl K. Min 

机构地区:[1]Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330714, South Korea [2]Department of Molecular Sciences and Technology, Ajou University, Suwon 443749, South Korea [3]Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA [4]Department of Biological Sciences, Aj ou University, Suwon 443749, South Korea

出  处:《Asian Journal of Andrology》2010年第6期807-813,共7页亚洲男性学杂志(英文版)

摘  要:Intracellular cAMP and Ca^2+ are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human ehorionic gonadotropin (hCG). However, the identification of Ca^2+ entry implicated in Leydig cell steroidogenesis is not well defined. The objective of this study was to identify the type of Ca^2+ channel that affects Leydig cell steroidogenesis. In vitro steroidogenesis in the freshly dissociated Leydig cells of mice was induced by hCG incubation. The effects of mibefradil (a putative T-type Ca^2+ channel blocker) on steroidogenesis were assessed using reverse transcription (RT)-polymerase chain reaction analysis for the steroidogenic acute regulatory protein (STAR) mRNA expression and testosterone production using radioimmunoassay. In the presence of 1.0 mmol L-1 extracellular Ca^2+, hCG at 1 to 100 IU noticeably elevated both StAR mRNA level and testosterone secretion (P 〈 0.05), and the stimulatory effects of hCG were markedly diminished by mibefradil in a dose-dependent manner (P 〈 0.05). Moreover; the hCG-induced increase in testosterone production was completely removed when external Ca^2+ was omitted, implying that Ca entry is needed for hCG-induced steroidogenesis. Furthermore, a patch-clamp study revealed the presence of mibefradil-sensitive Ca^24- currents seen at a concentration range that nearly paralleled those inhibiting steroidogenesis. Collectively, Our data provide evidence that hCG-stimulated steroidogenesis is mediated at least in part by Ca^2+ entry carried out by the T-type Ca^2+ channel in the Leydig cells of mice.Intracellular cAMP and Ca^2+ are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human ehorionic gonadotropin (hCG). However, the identification of Ca^2+ entry implicated in Leydig cell steroidogenesis is not well defined. The objective of this study was to identify the type of Ca^2+ channel that affects Leydig cell steroidogenesis. In vitro steroidogenesis in the freshly dissociated Leydig cells of mice was induced by hCG incubation. The effects of mibefradil (a putative T-type Ca^2+ channel blocker) on steroidogenesis were assessed using reverse transcription (RT)-polymerase chain reaction analysis for the steroidogenic acute regulatory protein (STAR) mRNA expression and testosterone production using radioimmunoassay. In the presence of 1.0 mmol L-1 extracellular Ca^2+, hCG at 1 to 100 IU noticeably elevated both StAR mRNA level and testosterone secretion (P 〈 0.05), and the stimulatory effects of hCG were markedly diminished by mibefradil in a dose-dependent manner (P 〈 0.05). Moreover; the hCG-induced increase in testosterone production was completely removed when external Ca^2+ was omitted, implying that Ca entry is needed for hCG-induced steroidogenesis. Furthermore, a patch-clamp study revealed the presence of mibefradil-sensitive Ca^24- currents seen at a concentration range that nearly paralleled those inhibiting steroidogenesis. Collectively, Our data provide evidence that hCG-stimulated steroidogenesis is mediated at least in part by Ca^2+ entry carried out by the T-type Ca^2+ channel in the Leydig cells of mice.

关 键 词:Leydig cells MIBEFRADIL STAR steroidogenesis T-type Ca^2+ channel 

分 类 号:Q492.4[生物学—生理学] S865.23[农业科学—野生动物驯养]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象