检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Rare Metals》2010年第6期621-624,共4页稀有金属(英文版)
基 金:supported by the National High-Tech Research and Development Program of China (Nos.2007AA05Z111);the National Basic Research Program of China (No.2010CB631305)
摘 要:The hydrogen storage properties of a Li-Mg-N-H material doped by a 4 mol.% Ti3Cr3V4 body centre cubic(BCC) alloy hydride and prepared with a ball-milling method were investigated by X-ray diffraction,scanning electron microscopy,transmission electron microscopy and Sievert's technology test.The results show that the Ti3Cr3V4 BCC alloy hydride/Li-Mg-N-H composite has good reversible hydrogen storage properties.The dehydrogenation kinetics of the Li-Mg-N-H system can be greatly improved by doping the Ti3Cr3V4 BCC alloy hydride.The composite desorbed 4.1 wt.% hydrogen in the first 60 min at 473 K under 0.1 MPa pressure,but when without the BCC alloy addition,only 3.0 wt.% hydrogen was desorbed under the same dehydrogenation condition.It can be deduced that the Ti3Cr3V4 BCC alloy uniformly distributed in the Li-Mg-N-H substrate could decrease the activating energy of hydrogen molecules to H atoms and increase H diffusion paths in the composite,enhancing the dehydrogenation kinetics of the Li-Mg-N-H system.The hydrogen storage properties of a Li-Mg-N-H material doped by a 4 mol.% Ti3Cr3V4 body centre cubic(BCC) alloy hydride and prepared with a ball-milling method were investigated by X-ray diffraction,scanning electron microscopy,transmission electron microscopy and Sievert's technology test.The results show that the Ti3Cr3V4 BCC alloy hydride/Li-Mg-N-H composite has good reversible hydrogen storage properties.The dehydrogenation kinetics of the Li-Mg-N-H system can be greatly improved by doping the Ti3Cr3V4 BCC alloy hydride.The composite desorbed 4.1 wt.% hydrogen in the first 60 min at 473 K under 0.1 MPa pressure,but when without the BCC alloy addition,only 3.0 wt.% hydrogen was desorbed under the same dehydrogenation condition.It can be deduced that the Ti3Cr3V4 BCC alloy uniformly distributed in the Li-Mg-N-H substrate could decrease the activating energy of hydrogen molecules to H atoms and increase H diffusion paths in the composite,enhancing the dehydrogenation kinetics of the Li-Mg-N-H system.
关 键 词:hydrogen storage alloys hydrogen storage hydrides DEHYDROGENATION
分 类 号:TG139.7[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.8