检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080
出 处:《计算机工程与应用》2010年第34期64-66,73,共4页Computer Engineering and Applications
摘 要:针对嵌入式系统软硬件划分问题,在分析遗传算法和模拟退火算法的主要优缺点的基础上,提出了一种新的小生境技术改进的遗传模拟退火算法(NGSA),在遗传算法中融入模拟退火思想,同时引入小生境技术,保持群体的多样性;并采用Metropo-lis法则形成新群体,改善群体的质量。实验结果证明该算法具有很强的爬山能力和全局搜索能力,与遗传算法(GA)和模拟退火算法(SA)相比适应度明显提高。To solve the hardware/software partitioning problem in embedded system,this paper proposes a New Genetic Simulated Annealing algorithm (NGSA) which based on analysis of genetic algorithms and simulates annealing algorithm the main advantages and disadvantages.The genetic algorithm integrates the simulated annealing idea;niche technology is introduced to maintain population diversity;and the Metropolis criterion with the formation of new groups to improve the quality of group.Experimental results show that the algorithm has strong climbing ability and global search capability,and the fitness value is significantly improved than genetic algorithm and simulated annealing algorithm.
关 键 词:嵌入式系统 软硬件划分 遗传算法 模拟退火算法 小生境技术
分 类 号:TP302[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117