机构地区:[1]Department of Microbiology and Immunology, Wenzhou Medical College, Wenzhou 325035, China
出 处:《Acta Biochimica et Biophysica Sinica》2010年第11期771-778,共8页生物化学与生物物理学报(英文版)
基 金:This work was supported by grants from the National Natural Science Foundation of China (no. 30972669) and Natural Science Foundation of Zhejiang province (no. Y205659).
摘 要:Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. Chlamydial major outer membrane protein (MOMP) can induce strong cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of MOMP was analyzed using computer-assisted techniques to scan B-cell epitopes, and three possible linear B-cell epitopes peptides (VLKTDVNKE, TKDASIDYHE, TRLIDERAAH) with high predicted antigenicity and high conservation were investigated. The DNA coding region for each potential epitope was cloned into pET32a(+) and expressed as Trx- His-tag fusion proteins in Escherichia coli. The fusion proteins were purified by Ni-NTA agarose beads and followed by SDS-PAGE and western blot analysis. We immunized mice with these three fusion proteins. The sera containing anti-epitope antibodies from the immunized mice could recognize C. trachomatis serovars D and E in ELISA. Antisera of these fusion proteins displayed an inhibitory effect on invasion of serovar E by in vitro neutralization assays. In addition, serum samples from convalescent C. trachomatis-infected patients were reactive with the epitope fusion proteins by western blot assay. Our results showed that the epitope sequences selected by bioinformatic analy- sis are highly conserved C. trachomatis MOMP B-cell epitopes, and could be good candidates for the development of subunit vaccines, which can be used in clinical diagnosis.Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. Chlamydial major outer membrane protein (MOMP) can induce strong cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of MOMP was analyzed using computer-assisted techniques to scan B-cell epitopes, and three possible linear B-cell epitopes peptides (VLKTDVNKE, TKDASIDYHE, TRLIDERAAH) with high predicted antigenicity and high conservation were investigated. The DNA coding region for each potential epitope was cloned into pET32a(+) and expressed as Trx- His-tag fusion proteins in Escherichia coli. The fusion proteins were purified by Ni-NTA agarose beads and followed by SDS-PAGE and western blot analysis. We immunized mice with these three fusion proteins. The sera containing anti-epitope antibodies from the immunized mice could recognize C. trachomatis serovars D and E in ELISA. Antisera of these fusion proteins displayed an inhibitory effect on invasion of serovar E by in vitro neutralization assays. In addition, serum samples from convalescent C. trachomatis-infected patients were reactive with the epitope fusion proteins by western blot assay. Our results showed that the epitope sequences selected by bioinformatic analy- sis are highly conserved C. trachomatis MOMP B-cell epitopes, and could be good candidates for the development of subunit vaccines, which can be used in clinical diagnosis.
关 键 词:Chlamydia trachomatis B-cell epitope major outer membrane protein (MOMP)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...