检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京林业大学汽车与交通工程学院,江苏南京210037
出 处:《南京林业大学学报(自然科学版)》2010年第6期157-160,共4页Journal of Nanjing Forestry University:Natural Sciences Edition
摘 要:为提高道路交通安全性,消除事故隐患,研究了道路、交通、交通设施和环境等方面对道路交通安全的影响,在分析交通事故黑点的成因鉴别方法(包括模糊聚类法、灰色关联分析、粗集理论)及其适应性基础上,以国道G104线K2177—K2178段为例,对公路交通中的不利因素进行筛选,发现公路事故黑点的主要因素是国道周边环境干扰,次要因素是未设置道路照明设施。3种交通事故黑点成因鉴别方法比较结果表明:模糊聚类法适用于处理大数据的事故黑点,灰色关联分析法适用于处理黑点成因主因素已确定的事故黑点,粗集理论可用于鉴别事故资料不完善的交通事故黑点的成因。Effects of road,traffic,facilities and environment on road traffic safety were investigated for improving road safety and eliminating traffic black spots.On the basis of analysis cause identification methods about black spots,including fuzzy clustering,gray correlation analysis,and rough set,and its suitability,taking G104 line K2177—K2178 section for example,and screening disadvantages in road traffic,it was found that the main factor of black spot was the interfering of surrounding environment and the secondary factor is the lack of lighting facilities,and traffic infrastructures were taken to improve it.The results showed that: Fuzzy clustering was applied to handle black spots which had large accidents data,and gray correlation analysis method could be applied to deal with black spots of which the major factors had been determined,and rough set could be used to identify the causes of black spots with imperfect information.
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.227