基于窗口滑动改进Prony算法的电力系统低频振荡识别  被引量:31

A Moving-window Prony Algorithm for Power System Low Frequency Oscillation Identification

在线阅读下载全文

作  者:丁蓝[1] 薛安成[1] 李津[1] 王金萍[2] 韩福坤[3] 王茂海[3] 

机构地区:[1]华北电力大学电力系统保护与动态安全监控教育部重点实验室,北京市102206 [2]华北电力科学研究院,北京市100045 [3]华北电力调度通信中心,北京市100053

出  处:《电力系统自动化》2010年第22期24-28,共5页Automation of Electric Power Systems

基  金:国家自然科学基金资助项目(50707035;50920105705;50837002);国家重点基础研究发展计划(973计划)资助项目(2009CB219704);高等学校学科创新引智计划("111"计划)(B08013);华北电力大学博士基金资助项目(200822003)~~

摘  要:Prony算法是获取电力系统低频振荡信息的有效方法。针对传统Prony方法只能选取局部信号进行分析且对噪声敏感的问题,提出了固定窗长滑动的改进措施,进而应用于电力系统低频振荡识别中。与传统方法相比,改进的Prony方法通过对信号采取滑动窗口处理,即将拟合目标函数由局部误差平方最小变为分窗口误差平方和最小,从而能够计及较长时间内的误差平均效应,因而具有抗噪声能力强、不受信号长度影响的特点。基于DSATools的仿真分析证实了窗口滑动的改进Prony算法能有效识别低频振荡模式,并且该方法在含噪声环境下仍然能够保持较高的准确性。Prony algorithm is an effective method to derive characteristics of power system low frequency oscillations. However, the traditional Prony algorithms are very sensitive to noises and can only be applied to part of signal every time. This paper proposes the moving-window Prony algorithm to the identification of low frequency oscillation of power system. With the moving-window technique, the objective function of the proposed Prony method is changed into the least square error by windows, which is different from the partial least square error corresponding to the traditional algorithms. Thus, the moving window Prony algorithm has stronger adaptability to noise and could be applied to long time range signals. The simulation results based on DSA Tools demonstrate that the moving window Prony algorithm has good and effective performance for identification of power system low frequency oscillation, even in cases when the PMU's data contains noises.

关 键 词:低频振荡 PRONY方法 窗口滑动 噪声 误差 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象