基于递阶粒子群方法的RBF网络自动设计  被引量:2

Design RBF Neural Network Based on Hierarchical PSO Automatically

在线阅读下载全文

作  者:陈得宝[1] 杨一军[1] 

机构地区:[1]淮北师范大学物理与电子信息学院,淮北235000

出  处:《系统仿真学报》2010年第12期2853-2857,共5页Journal of System Simulation

基  金:安徽省自然科学基金项目(090412070);安徽省高等学校省级优秀青年人才基金重点项目(2009SQRZ088ZD)

摘  要:针对径向基函数网络(RBFN)的结构和参数难以同时优化及粒子群不同结构的粒子飞跃困难问题,提出一种维数自适应变化递阶粒子群方法,同时完成对网络的结构和参数自动优化设计。此方法中,粒子群编码采用二进制和十进制相结合的混合形式,二进制表示网络隐层神经元的数量,十进制编码表示网络参数,每个粒子在不同代的飞翔维数由当前代最好粒子的适应度和粒子到目前为止的最好适应度及粒子群处于两个最好位置时的有效维数确定。适应度函数引导粒子向小规模和小误差方向运动。通过对函数建模和混沌时间序列的预测实验,验证了方法的有效性。In order to solve difficulties optimizing the structure and the parameters of RBFN simultaneously and flying among particles with different dimension,a hierarchical particle swarm optimization (PSO) with adaptive dimension was proposed to design structure and parameters of radical basis function neural networks (RBFN) automatically.In the method,the number of hidden layer for RBFN is coded by binary,and parameters are coded by decimal,the dimensions of the flying particle is determined by the best position of current generation and the best position that the particle derived so far and effective dimensions of the two best positions.Furthermore,the swarm will incline to small scales and small error by choosing a special fitness function which takes account factors of structure and parameters of RBFN.Simulation results with function approximation and prediction of chaotic time sequence demonstrate that the proposed method is efficient.

关 键 词:粒子群算法 径向基函数网络 混合编码方法 适应度函数 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象