GIS based ArcPRZM-3 model for bentazon leaching towards groundwater  

GIS based ArcPRZM-3 model for bentazon leaching towards groundwater

在线阅读下载全文

作  者:Tahir Ali Akbar Henry Lin 

机构地区:[1]College of Natural Resources,University of Wisconsin-Stevens Point [2]Department of Civil Engineering,Schulich School of Engineering,University of Calgary,2500 University Drive NW,Calgary,Alberta,T2N 1N4,Canada [3]Department of Crop and Soil Sciences,The Pennsylvania State University,University Park,PA 16802,USA

出  处:《Journal of Environmental Sciences》2010年第12期1854-1859,共6页环境科学学报(英文版)

基  金:supported by the United States Department of Agriculture Cooperative State Research,Education,and Extension Service(USDA-CSREES) grant through a subcontract from the University of Arkansas

摘  要:Groundwater contamination due to pesticide applications on agricultural lands is of great environmental concern. The mathematical models help to understand the mechanism of pesticide leaching in soils towards groundwater. We developed a user-friendly model called ArcPRZM-3 by integrating widely used Pesticide Root Zone Model version 3 (PRZM-3) using Visual Basic and Geographic Information System (GIS) based Avenue programming. ArcPRZM-3 could be used to simulate pesticide leaching towards groundwater with user-friendly input interfaces coupled with databases of crops, soils and pesticides. The outputs from ArcPRZM-3 could be visualized in user-friendly formats of tables, charts and maps. In this study we evaluated ArcPRZM-3 model by simulating bentazon leaching in soil towards groundwater. ArcPRZM-3 was applied to 37 sites in Woodruff County, Arkansas, USA to observe the daily average dissolved bentazon concentration for soybean, sorghum and rice at a depth of 1.8 m for a period of two years. Nineteen ranks of bentazon leaching potential were obtained using ArcPRZM-3 for all sites having different soil and crop combinations. ArcPRZM-3 simulation results for bentazon were compatible with the field monitored data in term of relative ranking and trend, although some uncertainties exist. This study indicated that macropore flow mechanism would be important in analyzing the effect of irrigation on groundwater contamination due to pesticides. Overall, ArcPRZM-3 could be used to simulate pesticide leaching towards groundwater more efficiently and effectively as compared to PRZM-3.Groundwater contamination due to pesticide applications on agricultural lands is of great environmental concern. The mathematical models help to understand the mechanism of pesticide leaching in soils towards groundwater. We developed a user-friendly model called ArcPRZM-3 by integrating widely used Pesticide Root Zone Model version 3 (PRZM-3) using Visual Basic and Geographic Information System (GIS) based Avenue programming. ArcPRZM-3 could be used to simulate pesticide leaching towards groundwater with user-friendly input interfaces coupled with databases of crops, soils and pesticides. The outputs from ArcPRZM-3 could be visualized in user-friendly formats of tables, charts and maps. In this study we evaluated ArcPRZM-3 model by simulating bentazon leaching in soil towards groundwater. ArcPRZM-3 was applied to 37 sites in Woodruff County, Arkansas, USA to observe the daily average dissolved bentazon concentration for soybean, sorghum and rice at a depth of 1.8 m for a period of two years. Nineteen ranks of bentazon leaching potential were obtained using ArcPRZM-3 for all sites having different soil and crop combinations. ArcPRZM-3 simulation results for bentazon were compatible with the field monitored data in term of relative ranking and trend, although some uncertainties exist. This study indicated that macropore flow mechanism would be important in analyzing the effect of irrigation on groundwater contamination due to pesticides. Overall, ArcPRZM-3 could be used to simulate pesticide leaching towards groundwater more efficiently and effectively as compared to PRZM-3.

关 键 词:ArcPRZM-3 PRZM-3 GIS pesticide leaching groundwater contamination BENTAZON 

分 类 号:X592[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象