扰动环境下Job Shop瓶颈识别方法研究  被引量:13

Bottleneck Identification for Job Shop in Disturbance Environment

在线阅读下载全文

作  者:王刚[1,2] 王军强[1,2] 孙树栋[1,2] 袁宗寅[1,2] 

机构地区:[1]西北工业大学系统集成与工程管理研究所,西安710072 [2]西北工业大学现代设计与集成制造技术教育部重点实验室,西安710072

出  处:《机械科学与技术》2010年第12期1697-1702,共6页Mechanical Science and Technology for Aerospace Engineering

基  金:国家自然科学基金项目(50705077);国家863/CIMS计划项目(2007AA04Z187);陕西省自然科学基础研究计划项目(2009JQ9002)资助

摘  要:针对Job Shop作业管理层面的瓶颈识别,改变传统将瓶颈识别独立于调度优化方案的做法,先进行瓶颈充分利用再进行瓶颈系统辨识,不仅保证了瓶颈的有效识别,而且保证了瓶颈的充分利用。笔者给出了工序级瓶颈识别指标,提出了瓶颈分级识别策略,采用遗传算法和优化仿真结合的方法实现瓶颈的充分利用,其中,利用遗传算法优化零件的投料顺序,采用Plant-Simulation建立模拟仿真模型,设置设备故障率、平均故障修复时间、缓冲容量等实际扰动,经过大量的生产过程仿真,基于瓶颈出现率进行瓶颈识别,并输出优化调度方案。算例验证表明了瓶颈识别方法的有效性。For the machine bottleneck identification problem in job shop operation management,a new machine bottleneck identification method is presented for treating simultaneously bottleneck identification and scheduling optimization solution in order to guarantee the full utilization of the bottleneck machine and the identification validity.First,the indicators for bottleneck identification of job shop operation management are presented.Then,the hierarchical bottleneck identification strategy is given,which consists of full utilization and subsequent identification of bottleneck.Genetic algorithm (GA) is selected to optimize the parts order,and then the job shop manufacturing process is simulated under the Plant-Simulation software environment,in which the parameters such as the machine capacity,failure rate and mean time to repair and the buffer capacity are set.After simulating repeatedly the procedure,the bottleneck machine was identified based on the indicator of bottleneck appearance rate while the scheduling optimization solution was exported.Simulation results show that the presented bottleneck identification method for job shop operation management is valid.

关 键 词:瓶颈识别 作业调度 仿真 

分 类 号:TH166[机械工程—机械制造及自动化] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象