检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北电网有限公司调度通信中心,辽宁沈阳110000
出 处:《东北电力技术》2010年第11期1-5,共5页Northeast Electric Power Technology
摘 要:针对粒子群(PSO)算法存在易陷入局部最优的缺点,提出了一种新的基于种群多样性指数的自适应粒子群优化算法(ASPO)。该算法利用种群多样性信息对惯性权重进行非线性调整,并在算法后期引入速度变异算子和位置交叉算子,使算法摆脱后期易于陷入局部最优的束缚,同时又保持前期搜索速度快特性。将其应用于电力系统无功优化,对IEEE-30节点系统进行仿真计算,并与GA、PSO等算法比较,结果表明APSO算法能有效应用于电力系统无功优化,其全局收敛性能、收敛精度和收敛稳定性均较GA、PSO算法有了明显提高。An adaptive particle swarm optimization algorithm(PSO)is presented to solve the problem that conventional PSO algorithm inclined to fall into partial optimization.A new method of adaptive particle swarm optimization algorithm(ASPO)based on population diversity is proposed.In this algorithm,inertia weight is nonlinearly adjusted by using population diversity information.And in the later stage of the algorithm,velocity mutation factor and position interchange factor are introduced to overcome the above defect and keep earlier stage characteristics of quick searching,which is used to reactive optimization for the power system.Simulation of IEEE-30-bus power system is done,compared to GA and PSO algorithm,the result shows that APSO algorithm is effectively used to reactive optimization in the power system.The global convergence performance,convergence accuracy and convergence stability is obviously improved compared with that of GA and PSO.
分 类 号:TM714.3[电气工程—电力系统及自动化] TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3