检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王俊坚[1] 赵宏伟[2] 钟秀萍[1] 刘阳生[1,3] 曾辉[1,4]
机构地区:[1]北京大学深圳研究生院城市与环境学院,深圳518055 [2]南京大学城市规划设计研究院,南京210008 [3]北京大学环境科学与工程学院,北京100871 [4]北京大学城市与环境学院,北京100871
出 处:《环境科学》2011年第1期298-304,共7页Environmental Science
基 金:国家自然科学基金项目(40830747);深圳市"双百计划"项目;公共科技专项计划项目(SY200806300176A)
摘 要:城市生活垃圾焚烧是重金属的重要人为排放源.为研究垃圾焚烧厂周围土壤重金属的浓度水平与空间分布,利用多元统计方法分析了深圳市清水河垃圾焚烧厂周围80个典型土壤样品中Hg、As、Cd、Cr、Cu、Ni、Pb、Se、Zn共9种重金属浓度.参照自然背景,该垃圾焚烧厂周围土壤上述重金属浓度分别为0.012~0.136、0.23~75.89、ND~1.17、21.7~116.0、ND~61.1、ND~47.0、ND~133.0、ND~16.4、8.6~246.9 mg.kg-1(ND为未检出),未发现明显高累积现象.聚类分析与历史比较表明,土壤中重金属的空间相关性发生改变,根据相似性可分为3类:①Cu、Ni、Cr、Se、Zn、Pb;②As、Cd;③Hg,成因与垃圾焚烧源相关.因子分析结果表明,3类金属在该垃圾焚烧厂周边区域具有不同的空间分布格局特征,分别以土壤生物地球化学作用(48.6%方差贡献)、垃圾焚烧源(16.6%)、地形地貌特征(13.2%)3个因子为主导影响因素,并据此绘制得对应因子得分地图.本研究为评估垃圾焚烧厂重金属排放对周边土壤的长期影响并进行健康风险评价提供依据.The municipal solid waste (MSW) incineration has been well known among key sources of heavy metal (HM) emission. To investigate the multivariate relationships and spatial distribution of HMs from this source, 9 HMs (Hg, As, Cd, Cr, Cu, Ni, Pb, Se and Zn) were analysed by multivariate statistical analysis in 80 representative soil samples including surface soils and subsurface soils around the Shenzhen Qingshuihe MSW Incineration Plant (MSWIP). Results show that, the concentrations of Hg, As, Cd, Cr, Cu, Ni, Pb, Se and Zn range 0. 012-0. 136, 0. 23-75.89, not detected (ND)-1. 17, 21.7-116.0, ND-61. 1, ND-47.0, ND-133. 0, ND- 16.4 and 8.6-246.9 mg. kg^-1 , respectively. No significant elevation of concentrations of HMs in soils is observed, compared with the natural background. Based on the hierarchical cluster and historical analysis, the spatial correlations of HMs have been changed by the impact of MSWIP. According to the similarity of concentration, the HMs can be divided into 3 categories : (1)Cu, Ni, Cr, Se, Zn, Pb; (2)As, Cd; (3)Hg. Factors analysis was also performed and shows that the HM distribution patterns are dominantly affected by 3 principal components: local biogeochemical characteristics (48.6% of variance) , impact of the MSWIP ( 16. 6% of variance) as well as topographical characteristics (13.2% of variance). Subsequently the 3 maps of factor scores are calculated and exhibited. This study favors to estimate the long-term effects of HM emission from MSWIP on surrounding soil environment and facilitate the local health risk assessment.
分 类 号:X53[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43