检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology
出 处:《Applied Mathematics and Mechanics(English Edition)》2010年第11期1347-1358,共12页应用数学和力学(英文版)
基 金:Project supported by the National Natural Science Foundation of China (No. 10772129)
摘 要:Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills, the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case, a shock wave solution is given. The small perturbations are further introduced, arising from the damping and the external load to an original Hamilton system, and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills, the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case, a shock wave solution is given. The small perturbations are further introduced, arising from the damping and the external load to an original Hamilton system, and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.
关 键 词:Timoshenko beam finite-deflection shock wave chaos motion Jacobi elliptic function expansion Melnikov function
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28