Anti-Noise Performance of the FT Continuous Zoom Analysis Method for Discrete Spectrum  被引量:2

Anti-Noise Performance of the FT Continuous Zoom Analysis Method for Discrete Spectrum

在线阅读下载全文

作  者:LINHuibin DING Kang XU Chuanyan 

机构地区:[1]School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China [2]Guangdong Key Lab for Automotive Engineering, Guangzhou 510640, China

出  处:《Chinese Journal of Mechanical Engineering》2010年第6期774-779,共6页中国机械工程学报(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No. 50875085, Grant No. 50605021, and Grant No. 51075150);Guangdong Provincial Natural Science Foundation of China (Grant No. 91510641010000320)

摘  要:As a discrete spectrum correction method, the Fourier transform (FT) continuous zoom analysis method is widely used in vibration signal analysis, but little effort had been made on this method's anti-noise performance. It is widely believed that the analysis accuracy of the method can be substantially improved by increasing the zoom multiple, however, with the zoom multiple increases, the frequency estimation accuracy may decline sometimes in practices. Aiming at the problems above, this paper analyzes the sources of frequency estimation error when a harmonic signal mixed with and without noise is processed using the FT continuous zoom analysis. According to the characteristics that the local maximum of the zoom spectrum may be wrongly selected when the signal is corrupted with noise, the number of wrongly selected spectrum lines is deduced under different signal-to-noise ratio and local zoom multiple, and then the maximum frequency estimation error is given accordingly. The validity of the presented analysis is confirmed by simulations results. The frequency estimation accuracy of this method will not improve any more under the influence of noise, and there is a best zoom multiple, when the zoom multiple is larger than the best zoom multiple; the maximum frequency estimation error will fluctuate back and forth. The best zoom multiple curves under different signal-to-noise ratios given provide a theoretical basis for the choice of the appropriate zoom multiples of the FT continuous zoom analysis method in engineering applications.As a discrete spectrum correction method, the Fourier transform (FT) continuous zoom analysis method is widely used in vibration signal analysis, but little effort had been made on this method's anti-noise performance. It is widely believed that the analysis accuracy of the method can be substantially improved by increasing the zoom multiple, however, with the zoom multiple increases, the frequency estimation accuracy may decline sometimes in practices. Aiming at the problems above, this paper analyzes the sources of frequency estimation error when a harmonic signal mixed with and without noise is processed using the FT continuous zoom analysis. According to the characteristics that the local maximum of the zoom spectrum may be wrongly selected when the signal is corrupted with noise, the number of wrongly selected spectrum lines is deduced under different signal-to-noise ratio and local zoom multiple, and then the maximum frequency estimation error is given accordingly. The validity of the presented analysis is confirmed by simulations results. The frequency estimation accuracy of this method will not improve any more under the influence of noise, and there is a best zoom multiple, when the zoom multiple is larger than the best zoom multiple; the maximum frequency estimation error will fluctuate back and forth. The best zoom multiple curves under different signal-to-noise ratios given provide a theoretical basis for the choice of the appropriate zoom multiples of the FT continuous zoom analysis method in engineering applications.

关 键 词:SPECTRUM spectrum correction zoom analysis anti-noise performance 

分 类 号:TN943[电子电信—信号与信息处理] TU473.16[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象