检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]黑龙江大学计算机科学技术学院,哈尔滨150080
出 处:《中国图象图形学报》2011年第1期124-128,共5页Journal of Image and Graphics
基 金:黑龙江大学高层次(团队)计划资助.
摘 要:裁剪算法的核心问题是速度问题,而求裁剪窗口和裁剪对象的交点是影响裁剪速度的主要因素。特别是椭圆对线段的裁剪,由于椭圆的方程是二次的,求椭圆与线段的交点需要求解一元二次方程,涉及开方运算,非常浪费机器时间。为提高裁剪速度,设计出5位的区域编码,利用此技术能够迅速而准确地判断出椭圆和线段的位置关系。对于完全可见或显然完全不可见的线段立即做出保留或弃掉的决定,避免求交运算;对于能够明确断定与椭圆相交的线段,采用中点分割算法求椭圆和线段的近似交点,避免求解一元二次方程和开方运算;对于其他情形的线段通过求解一元二次方程来完成裁剪。基于前述思想设计出的椭圆对线段裁剪算法与现有的同类算法相比,算法实现简单,裁剪速度具有较大提高。The key in clipping algorithm is the efficiency which is mainly influenced by computing the intersection points between the clipping window and the clipped object. Particularly, for line clipping with respect to elliptical window, to compute the intersection points between the ellipse and the line the quadratic equation has to be solved which involves the extraction of square root that is considered inefficient. To address this, we develop a technique of 5-bit region encoding by which the relationship between an ellipse and a line segment can be determined quickly and accurately. The line segments that are completely visible or completely invisible are discarded; the line segments that surely intersect with the ellipse are dealt with by middle-point segmentation algorithm to obtain the approximate intersection points; and the remaining line segments are clipped by solving the quadratic equations. The proposed algorithm is much more efficient than traditional algorithms, and is straightforward.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.12