基于AODE和再抽样的软件缺陷预测模型  被引量:3

Software defect prediction model based on AODE and resampling

在线阅读下载全文

作  者:周丰[1] 马力[1] 

机构地区:[1]华北计算技术研究所,北京100083

出  处:《计算机工程与设计》2011年第1期210-212,300,共4页Computer Engineering and Design

摘  要:为了确切地估计软件缺陷分布,提出了基于AODE和再抽样的软件缺陷预测模型。分析了几种常用贝叶斯分类器的优缺点,以及软件缺陷度量元和再抽样方法,设计了多AODE分类器,该分类器是由多个AODE二分类器组成的。在以上基础上,建立了采用多AODE分类器和再抽样方法的软件缺陷预测模型,实验结果表明,该分类器的分类准确度较常用贝叶斯分类器高。通过收集到的缺陷数据样本比较结果表明,该模型比一些常用贝叶斯模型具有更好的预测准确性和稳定性。To evaluate software defect distribution exactly,a software defect prediction model based on AODE and resampling is put forward.Firstly,some common Bayesian classifiers are introduced briefly,and their advantages and deficiencies are pointed out.Then, software defect metric units and resampling methods are analyzed,and multi-AODE classifier formed by multiple AODE 2-classifier is designed.Comparative experiments show that multi-AODE classifier has better classification accuracy performance than some common Bayesian classifier.On this basis,the software defect prediction model based on multi-AODE classifier and resampling is constructed. Finally,collected defect data samples are used to verify the model and the result indicated that the model is better than the common Bayesian models both in veracity and stability of prediction.

关 键 词:平均单一相关评估器 贝叶斯分类器 软件缺陷度量 再抽样 软件缺陷预测 

分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象