检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁永伟[1] 杨小虎[1] 陈根才[1,2] Kavs A J
机构地区:[1]浙江大学计算机科学与技术学院,杭州310027 [2]美国道富银行,波士顿02111
出 处:《电子与信息学报》2011年第1期122-128,共7页Journal of Electronics & Information Technology
摘 要:时间序列的近似表示和相似度量是时间序列数据挖掘的重要任务之一,是进行相似匹配的关键。该文针对现有的各种基于分段线性表示(Piecewise Linear Representation,PLR)相似度量方法存在的序列长度依赖和多分辨率条件下的潜在识别误差等缺点,提出了一种序列分段线性弧度表示和基于弧度距离的相似度量方法,实现了序列的快速在线分割和相似度计算。该方法简洁直观,利用分段弧度对分段趋势进行细粒度划分来保留序列主要形态特征,有效地提高了度量结果的准确性和多分辨率条件下的稳定性。该方法具有序列分割算法独立性特点,可用于时间序列的相似查询、模式匹配、分类和聚类。Time series approximation representation and similarity measurement is one of the fundamental tasks in time series data mining,and the key to similarity matching.In view of shortcomings of various existing PLR(Piecewise Linear Representation) based similarity measure approaches,like series-length dependent issue and potential recognition error under multi-resolution,a radian based time series piecewise linear representation and radian-distance based similarity measurement are presented to cater for the rapid online segmentation and similarity calculation in this paper.The proposed method is really simple but intuitive,it retains major shape features of the series by using segment radian for fine grained division,and effectively improves the accuracy and reliability of the measurement under multi-resolution.This method is segmentation algorithm independent and can be further applied to similarity query,pattern matching,classification and clustering for time series.
关 键 词:时间序列 分段线性表示 分段趋势 弧度距离 相似性
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15