适用于SIMD体系结构的FPGA分页仿真模型研究  被引量:1

Research on FPGA-Based Paging-Simulation Model for SIMD Architecture

在线阅读下载全文

作  者:何义[1] 任巨[1] 文梅[1] 杨乾明[1] 伍楠[1] 张春元[1] 郭敏[1] 

机构地区:[1]国防科学技术大学计算机学院,长沙410073

出  处:《计算机研究与发展》2011年第1期9-18,共10页Journal of Computer Research and Development

基  金:国家自然科学基金项目(60703073;60903041);国家"八六三"高技术研究发展计划基金项目(2009AA01Z102);国防科学技术大学计算机学院"高性能计算联合博导组基金"项目

摘  要:SIMD结构能有效地开发多媒体和复杂科学计算的并行性,成为产业应用和研究的热点.在大规模SIMD体系结构研究中,为缓解FPGA芯片容量对仿真系统规模的限制,提出了适用于SIMD体系结构的FPGA分页仿真模型,有效降低了SIMD结构对FPGA计算资源和存储资源的需求,提高了SIMD结构的可验证规模.对MASA流处理器的仿真实验结果表明,不采用任何仿真优化技术,FPGA芯片EP2S180可支持的最大仿真规模为8个cluster的MASA,采用分页仿真模型,EP2S180的最大仿真规模可增加至256个cluster的MASA,而且仿真时间的增量是可接受的.With the appearance of massively compute-intensive applications such as multimedia and complicated scientific computing,SIMD architecture has become a hotspot of research due to its intrinsic scalable data-parallel structure.The low simulating speed of software simulation brings lots of inconveniency in large scale SMID architecture research.FPGA-based simulation system is much faster,but the scale of the target system is often limited by the capacity of the FPGA chips.Using more FPGA chips or larger capacity FPGA chip may not only increase the complexity of design,but also increase the cost of research.In this paper,we propose a novel FPGA-based paging-simulation model for SIMD architecture,which can reduce the computing resource and memory resource consuming of the simulation system efficiently.On the basis of this model,large scale SIMD architectures can be simulated with limited FPGA resources.We build the simulation system of MASA on Altera StratixII series chip EP2S180.The experiment results show that without any simulation optimizing technology,the largest scale system can be implemented on EP2S180 is MASA of 8 clusters,while based on the paging-simulation model,the largest scale system can be implemented on EP2S180 with MASA of 256 clusters,and the increment of the simulation time is acceptable.

关 键 词:FPGA 仿真 SIMD 体系结构 流处理器 

分 类 号:TP302[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象