Mechanical Properties and Temper Resistance of Deformation Induced Ferrite in a Low Carbon Steel  被引量:3

Mechanical Properties and Temper Resistance of Deformation Induced Ferrite in a Low Carbon Steel

在线阅读下载全文

作  者:Luhan Hao,Namin Xiao,Chengwu Zheng and Dianzhong Li Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China 

出  处:《Journal of Materials Science & Technology》2010年第12期1107-1113,共7页材料科学技术(英文版)

基  金:supported by the National Natural Science Foundation of China (NSFC) under Grant No. 50871109

摘  要:The microstructures and mechanical properties of deformation induced ferrite (DIF) in the low carbon steel Q235 under different deformation temperatures have been investigated systematically. Through deformation induced ferrite transformation (DIFT), ferrite grain can be refined to 3 μm and accounts for above 85% of the overall fraction. Yield strength of DIF (〉500 MPa) is increased by up to 100% compared with the conventional low carbon steel. Comparison of microstructure and mechanical properties in the Q235 steel with DIF and tempered DIF microstructure illustrates that the strengthening mechanism of DIF microstructure is the combination of grain boundary strengthening and carbon supersaturated strengthening. Electron back-scattered diffraction (EBSD) analysis and high magnification scanning electron microscopy (SEM) observation denote that high-angle grain boundary among ultrafine ferrite grain and the transformation product of retain austenite membrane along ferrite boundaries are responsible for the stability of ferrite grain size during tempering process. Transmission electron microscopy (TEM) analysis demonstrates that the transformation product of retained austenite membrane between ferrite grain boundaries is cementite.The microstructures and mechanical properties of deformation induced ferrite (DIF) in the low carbon steel Q235 under different deformation temperatures have been investigated systematically. Through deformation induced ferrite transformation (DIFT), ferrite grain can be refined to 3 μm and accounts for above 85% of the overall fraction. Yield strength of DIF (〉500 MPa) is increased by up to 100% compared with the conventional low carbon steel. Comparison of microstructure and mechanical properties in the Q235 steel with DIF and tempered DIF microstructure illustrates that the strengthening mechanism of DIF microstructure is the combination of grain boundary strengthening and carbon supersaturated strengthening. Electron back-scattered diffraction (EBSD) analysis and high magnification scanning electron microscopy (SEM) observation denote that high-angle grain boundary among ultrafine ferrite grain and the transformation product of retain austenite membrane along ferrite boundaries are responsible for the stability of ferrite grain size during tempering process. Transmission electron microscopy (TEM) analysis demonstrates that the transformation product of retained austenite membrane between ferrite grain boundaries is cementite.

关 键 词:Low carbon steel Deformation Mechanical properties Temper induced ferrite transformation Grain size RESISTANCE 

分 类 号:TG142.31[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象