检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学化学系分子设计与应用研究所,浙江杭州310027
出 处:《计算机与应用化学》2011年第1期61-68,共8页Computers and Applied Chemistry
摘 要:从天然氨基酸的50个性质参数中经主成分分析得出1种新的氨基酸描述子:氨基酸特征性质得分。并在此基础上通过定义基于向量形式的自相关函数以及引入Mercer核技术将该函数运算空间进行非线性变换,最终提出了1种新的蛋白质序列表征方法:核序列自相关函数。采用该函数对632个已知晶体结构的非同源蛋白分类研究结果表明:KSACF能够恰当提取蛋白质一级序列特征以及氨基酸残基之间隐含的内在联系,从而对不同蛋白质结构类进行准确预测。A novel amino acid descriptor termed as principal component scores of amino acid characteristic properties (SACP) was derived from 50 chemical properties of natural amino acids by using principle component analysis approach and transformed nonlinearly via mercer kernel technique to yield a vector form-based auto-correlative function. Consequently, a novel amino acid characterization protocol was presented, i.e., kernel sequence auto-correlation function (KSACF). KSACF was then applied to perform classification study of 632 non-homologous proteins with known structures. It was indicated that KSACF is present a good performance in characterizing primary structures for proteins and potential relationship between amino acid residues, thus able to reliably predict the different types of protein structures.
关 键 词:核序列自相关函数 氨基酸特征性质得分 蛋白质结构类预测
分 类 号:TQ015.9[化学工程] TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46