检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2011年第1期201-203,共3页Computer Engineering
基 金:国家自然科学基金资助项目(50505051)
摘 要:针对图像相关匹配计算量大的问题,提出基于云遗传算法的图像相关匹配方法。考虑到图像平均量的存在会增加匹配的难度,对传统归一化相关测度进行修正。为寻找最佳匹配点,将修正后的相关测度作为适应度函数,采用云遗传算法进行寻优。由于云遗传算法具有收敛速度快、局部寻优能力强和不易产生早熟现象等优点,新方法的匹配精度和速度都得到提高,且抗噪声能力强。仿真实验结果表明,新方法对无噪声和有噪声图像都能实现高精度匹配,在匹配精度和速度上优于基于自适应遗传算法的匹配方法。Considering image matching is a heavy computation task, this paper proposes a novel image correlation matching method based on Cloud Genetic Algorithm(CGA). To avoid mean image value increases the difficulty of image matching, an improved normalized correlation measure is developed as a fitness function for searching the best matching point. Since CGA can converge fast to a high quality local optimal, the novel method's accuracy and speed are high, and it is robust to noise. Simulation results show that the proposed method can match both noise free images and noisy images with higher accuracy and higher speed than the adaptive genetic algorithm based matching approach.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145