机构地区:[1]四川大学华西医院内分泌代谢科,成都610041 [2]郑州市中心医院内分泌科 [3]中国循证医学中心,成都610041 [4]上海交通大学附属第六人民医院内分泌代谢科上海市糖尿病研究所上海市糖尿病临床医学中心,上海200233
出 处:《四川大学学报(医学版)》2011年第1期95-100,共6页Journal of Sichuan University(Medical Sciences)
基 金:上海市市级医院新兴前沿技术联合攻关项目(批准号SHDC12006101)资助
摘 要:目的探讨自我血糖监测(self-monitoring of blood glucose,SMBG)值与日内血糖波动参数之间的关系,并用SMBG值建立预测日内血糖波动参数的方程。方法用动态血糖监测系统(continuous glucose monitoring system,CGMS)对一组糖调节异常(IGR)和新诊断为2型糖尿病(T2DM)的受试者行72h持续血糖监测,得出两组受试者的平均血糖波动幅度(MAGE),平均餐后血糖漂移幅度(MPPGE)和血糖水平的标准差(sBG),同时行每日7次SMBG[即空腹血糖(FBG)、早餐后血糖(BGAB)、午餐前血糖(BGBL)、午餐后血糖(BGAL)、晚餐前血糖(BGBS)、晚餐后血糖(BGAS)和睡前血糖(BGBR)]得出相应的点值血糖。随机抽取80%的受试者进行多元逐步回归分析,以CGMS测定的血糖波动指标为应变量,受试者的年龄和SMBG值为自变量,建立上述指标的回归方程,然后用剩余20%的受试者对回归方程进行回代验证。结果在IGR受试者,预测所有日内血糖波动指标的回归方程中均包括了BGAS、BGAB、BGAL和FBG,但预测MPPGE、sBG的回归方程中还包括了年龄;在T2DM受试者,预测所有日内血糖波动指标的回归方程中均包括了BGAS和BGAL,但预测MAGE的回归方程还包括了年龄,预测MPPGE的回归方程中包括了BGBL和BGBS,预测sBG的回归方程中包括了FBG。在回代验证中,MAGE的预测值与测量值之间的平均差异在IGR、T2DM组分别为4.1%和8.2%;MPPGE的预测值与测量值之间的平均差异在IGR、T2DM组分别为23.1%和1.3%;sBG的预测值与测量值之间的平均差异在IGR、T2DM组分别为1.2%和6.8%;除IGR组MPPGE的预测值与测量值之间的吻合程度较差外,两组人群其余指标的预测值与测量值之间的吻合程度较好。结论 IGR人群的MAGE、sBG和T2DM人群的MAGE、MPPGE、SDBG可以通过年龄与每日7次SMBG值来预测。Objective To investigate the associations between the patterns of change of self-monitored blood glucose(SMBG) and the parameters of intraday blood glucose variability 〔mean absolute glucose excursions(MAGE),mean postprandial glucose excursion(MPPGE) and standard deviation of blood glucose(sBG)〕 measured by the continuous glucose monitoring system.Methods A 72-hour continuous glucose monitoring was performed in a sample 105 people with impaired glucose tolerance(IGR,n=51) and newly-diagnosed type 2 diabetes mellitus(T2DM,n=54) to calculate MAGE,MPPGE and sBG.Meanwhile,fingertip blood glucose self-monitoring was performed to determine fasting blood glucose(FBG),blood glucose after breakfast(BGAB),blood glucose before lunch(BGBL),blood glucose after lunch(BGAL),blood glucose before supper(BGBS),blood glucose after supper(BGAS),and blood glucose before sleeping(BGBR) at the same period of time.Multiple stepwise regression analysis was performed to generate equations for predicting MAGE,MPPGE and sBG with age and the self-monitoring blood glucose parameters in 80% of the subjects(41 IGR and 44 T2DM,randomLy selected from the overall sample).These equations were then cross-validated in the remaining 20% subjects(10 IGR and 10 T2DM).Results BGAS,BGAB,BGAL and FBG entered into the regression equations predicting MAGE,sBG and MPPGE for the IGR subject,while age only entered into the regression equations predicting MPPGE and sBG.For the subjects with T2DM,BGAS,BGAL and age entered into the equation predicting MAGE;BGAS,BGAL,BGBL and BGBS entered into the equation predicting MPPGE;BGAS,BGAL and FBG entered into the equation predicting sBG.The cross-validation study showed that the differences between predicted and observed values of MAGE in the subjects with IGR and T2DM were 4.1% and 8.2%,respectively;the differences between predicted and observed values of MPPGE in the subjects with IGR and T2DM were 23.1% and 1.3%,respectively;and the differences between pr
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...